Self Studies

Complex Numbers and Quadratic Equations Test 12

Result Self Studies

Complex Numbers and Quadratic Equations Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$(x - 1) \displaystyle \left ( x + \frac{1}{2} - \frac{\sqrt{3}}{2} i \right )\left ( x + \frac{1}{2} + \frac{\sqrt 3}{2} i \right )$$ is
    Solution
    $$\left( x-1 \right) \left( x+\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 }  }{ 2 } i \right) \left( x+\dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 }  }{ 2 } i \right) $$
    $$=\left( x-1 \right) \left[ \left( x+\dfrac { 1 }{ 2 }  \right) -\left( \dfrac { \sqrt { 3 }  }{ 2 } i \right)  \right] \left[ \left( x+\dfrac { 1 }{ 2 }  \right) +\left( \dfrac { \sqrt { 3 }  }{ 2 } i \right)  \right] $$
    $$=\left( x-1 \right) \left[ \left( x+\dfrac { 1 }{ 2 }  \right) ^{ 2 }-\left( \dfrac { \sqrt { 3 }  }{ 2 } i \right) ^{ 2 } \right] $$
    $$=\left( x-1 \right) \left[ { x }^{ 2 }+x+\dfrac { 1 }{ 4 } +\dfrac { 3 }{ 4 }  \right] $$
    $$=\left( x-1 \right) \left[ { x }^{ 2 }+x+1 \right] $$
    $$=x^3+x^2+x-x^2-x-1$$
    $$=x^3-1$$
    Hence, the answer is $$x^3-1.$$
  • Question 2
    1 / -0
    The number of real solutions of the equation $$\displaystyle{\left(\frac{5}{7}\right)^2}=-x^2+2x-3$$ is equal to 
    Solution
    $$\displaystyle { \left( \frac { 5 }{ 7 }\right)}^{ 2 }=-{ x }^{ 2 }+2x-3$$
    $$\displaystyle \Rightarrow { x }^{ 2 }-2x+3-\frac {25 }{ 49 } =0$$
    $$\Rightarrow { 49x }^{ 2 }-98x+122=0$$
    Hence, $$D={ \left( 98 \right)}^{ 2 }-4\left( 122 \right) \left( 49 \right) <0$$
    So, roots are imaginary.
  • Question 3
    1 / -0
    Number of integer values of k for which the quadratic equation $$\displaystyle 2x^{2}+kx-4=0$$ will have two rational solutions is
    Solution
    Dividing the equation by the coefficient of $$x^{2}$$ i.e.  2 we get 

    $$x^{2}+\dfrac{kx}{2}-2=0$$

    $$\left(x+\dfrac{k}{4}\right)^{2}-\dfrac{k^{2}}{16}-2=0$$

    $$\left(x+\dfrac{k}{4}\right)^{2}=\dfrac{k^{2}+32}{16}$$

    Hence for rational roots, $$\dfrac{k^{2}+32}{16}$$ has to be a perfect square.

    We get a perfect square at $$k=\pm2$$ for ($$\dfrac{k^{2}+32}{16}$$) i.e. $$\dfrac{36}{16}$$ which becomes $$\dfrac{6}{4}$$ upon removing the square

    We get a perfect square at $$k=\pm7$$ for ($$\dfrac{k^{2}+32}{16}$$) i.e. $$\dfrac{81}{16}$$ which becomes $$\dfrac{9}{4}$$ upon removing the square

    Hence the number of integral values of k is $$4 (2, -2, 7,-7)$$
  • Question 4
    1 / -0
    If $$z_1$$ and $$z_2$$ are any two complex numbers, then $$\displaystyle \frac{z_2 + z_1}{||z_2| - |z_1||}$$ is
    Solution

  • Question 5
    1 / -0
    Find the value of $$k$$ for which the quadratic equation $$\displaystyle \left ( k-2 \right )x^{2}+2\left ( 2k-3 \right )x+5k-6=0$$ has equal roots
    Solution
    Since the above equation has equal roots
    Hence
    $$B^{2}-4AC=0$$
    Hence
    $$4(2k-3)^{2}-4(5k-6)(k-2)=0$$
    $$4k^{2}-12k+9-(5k^{2}-16k+12)=0$$
    $$-k^{2}+4k-3=0$$
    Or 
    $$k^{2}-4k+3=0$$
    $$(k-3)(k-1)=0$$
    Hence
    $$k=3$$ and $$k=1$$.
  • Question 6
    1 / -0
    The locus represented by $$|z -1|=|z + i|$$ is
    Solution
    Given,
    $$ |z−1|=|z+i|$$
     To find the locus of the equation.
     Solution,
     Given that,
    $$|z−1|=|z+i|$$
     Say $$x=x+iy$$
    $$ \left| x+iy-1 \right| =\left| x+iy+1 \right| $$
    $$ \left| (x-1)+iy \right| =\left| x+i(y+1) \right| $$
    $$\Rightarrow \sqrt{(x-1)^2+y^2}=\sqrt{x^2+(y+1)^2}$$
    Squaring both sides,
    $$x^2+1-2x+y^2=x^2+y^2+1+2y$$
    $$\Rightarrow 1-2x=2y+1$$
    $$\therefore \ x+y=0$$  [line passes through origin]
    Hence, C is the right answer

  • Question 7
    1 / -0
    If the roots of the equation $$\displaystyle \left ( a^{2}+b^{2} \right )x^{2}-2b\left ( a+c \right )x+\left ( b^{2}+c^{2} \right )=0 $$ are equal then
    Solution
    Since the roots are equal
    $$B^{2}-4AC=0$$
    Hence
    $$4b^{2}(a+c)^{2}-4(b^{2}+c^{2})(a^{2}+b^{2})=0$$
    $$4b^{2}a^{2}+4b^{2}c^{2}+8b^{2}ac-4b^{2}a^{2}-4b^{4}-4c^{2}a^{2}-4c^{2}b^{2}=0$$
    $$8b^{2}ac-4b^{4}-4c^{2}a^{2}=0$$
    Or
    $$(b^{2})^{2}-2b^{2}ac+(ac)^{2}=0$$
    $$b^{2}=\dfrac{2ac\pm\sqrt{4ac^{2}-4ac^{2}}}{2}$$
    $$b^{2}=ac$$
  • Question 8
    1 / -0
    In the argand diagram, if $$O,P$$ and $$Q$$ represents respectively the origin and the complex numbers $$z$$ and $$z+iz$$ then the $$\angle OPQ$$ is
    Solution
    Let $$\displaystyle z=r\left( \cos { \theta  } +i\sin { \theta  }  \right) ,$$ then
    $$\displaystyle z+iz=r\left( \cos { \theta  } +i\sin { \theta  }  \right) +ir\left( \cos { \theta  } +i\sin { \theta  }  \right) $$
    $$\displaystyle=r\left[ \left( \cos { \theta  } -\sin { \theta  }  \right) +i\left( \sin { \theta  } +\cos { \theta  }  \right)  \right] $$
    $$\displaystyle=\sqrt { 2 } r\left[ \cos { \left( \theta +\frac { \pi  }{ 4 }  \right)  } +i\sin { \left( \theta =\frac { \pi  }{ 4 }  \right)  }  \right] $$
    In $$\displaystyle{ \triangle OPQ } ,$$
    $$\displaystyle{ PQ }^{ 2 }={ r }^{ 2 }+{ \left( \sqrt { 2 } r \right)  }^{ 2 }-2r\left( \sqrt { 2 } r \right) \cos { \frac { \pi  }{ 4 }  } $$
    $$\displaystyle={ r }^{ 2 }+2{ r }^{ 2 }-2{ r }^{ 2 }={ r }^{ 2 }$$
    $$\displaystyle\therefore PQ=r,\quad$$
    $$ \therefore \angle OPQ=\dfrac { \pi  }{ 2 } $$

  • Question 9
    1 / -0
    The value (s) of $$k$$ for which the quadratic equation $$\displaystyle kx^{2}-kx+1=0$$ has equal roots is
    Solution
    For equal roots 
    $$B^{2}-4AC=0$$
    Hence
    $$k^{2}-4k=0$$
    $$k(k-4)=0$$
    $$k=0$$ or $$k=4$$
    Now if $$K=0$$, the above equation will be $$1=0$$ which is not true.
    Hence $$k=4$$ is the answer.
  • Question 10
    1 / -0
    Let $$z = x + iy$$ & amp $$(e^{z^2})$$ = amp $$(e^{(z+i)})$$. If $$y = (x)$$ is a function, then $$y(3)$$ is equal to 
    Solution
    $$(e^{z^2} ) = e^{(x^2  - y^2 )+2ixy}=e^{x^2-y^2}.e^{ixy}$$
    $$\Rightarrow$$ amp $$(e^{z^2}) = 2xy$$
    And amp$$(e^{(z+i)}) =$$ amp$$(e^{x+(y+1)i})=$$ amp$$(e^x.e^{i(y+1)})= (y + 1)$$
    $$\therefore 2xy = y + 1  \Rightarrow \displaystyle y = \frac{1}{(2x - 1)}$$
    $$\therefore y(3) = \dfrac{1}{5}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now