Self Studies

Complex Numbers and Quadratic Equations Test 13

Result Self Studies

Complex Numbers and Quadratic Equations Test 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle \left| Z_{r}-r\right| \leq r,\forall r=1,2,3,.......n.$$ Then $$\displaystyle \left| \sum_{r=1}^{n} Z_{r} \right| $$ is less than
    Solution
    $$|Z_r - r| \le r$$

    $$\therefore Z_r \le 2r$$

    or $$|Z_r| \le 2r$$

    also $$\sum_{r=1}^n |Z_r| \le 2 \sum_{r=1}^n r$$

    also $$|\sum_{r=1}^n Z_r| \le \sum_{r=1}^n |Z_r|$$    $$\{$$ extending triangle inequality $$\}$$

    $$\therefore |\sum_{r=1}^n Z_r| \le 2\times \dfrac{n(n+1)}{2}$$

    $$\therefore |\sum_{r=1}^n Z_r| \le  {n(n+1)}$$

    $$\therefore$$ option C is correct.
  • Question 2
    1 / -0
    The number of real roots of the equation $$\displaystyle \frac{A^{2}}{x} +\frac{B^{2}}{x-1}=1$$ where A and B are real numbers not equal to zero simultaneously, is :
    Solution
    Given that $$\cfrac { { A }^{ 2 } }{ x } +\cfrac { { B }^{ 2 } }{ x-1 } =1,A,B\epsilon R$$
    A and B cannot be zero simultaneously
    $$\left( { A }^{ 2 }+{ B }^{ 2 } \right) x-{ A }^{ 2 }={ x }^{ 2 }-x$$
    $${ x }^{ 2 }-\left( { A }^{ 2 }+{ B }^{ 2 }+1 \right) x+{ A }^{ 2 }=0$$
    $$\triangle ={ \left( { A }^{ 2 }+{ B }^{ 2 }+1 \right)  }^{ 2 }-4{ A }^{ 2 }$$
    $$=\left( { A }^{ 2 }+{ B }^{ 2 }+1+2A \right) \left( { A }^{ 2 }+{ B }^{ 2 }+1-2A \right) $$
    $$=\left( { \left( A+1 \right)  }^{ 2 }+{ B }^{ 2 } \right) \left( { (A-1) }^{ 2 }+{ B }^{ 2 } \right) $$
    $$\triangle =0$$ If $$A=\pm 1$$ & $$B=0$$
    $$\therefore \triangle $$ is always $$\ge 0$$
    $$\therefore $$Number of real roots $$1$$ (or) $$2$$
  • Question 3
    1 / -0
    Number of complex numbers $$z$$ satisfying $$\left| 2z \right| =\left| 2z-1 \right| =\left| 2z+1 \right| $$ is equal to-
    Solution
    Let the complex number $$z$$ be $$x+iy$$
    Given that $$|2z|=|2z-1|$$
    $$\Rightarrow 2\sqrt { { x }^{ 2 }+{ y }^{ 2 } } =\sqrt { { (2x-1) }^{ 2 }+{ y }^{ 2 } } $$
    $$\Rightarrow 3{y}^{2}+4x=1$$
    Given that $$|2z|=|2z+1|$$
    $$\Rightarrow 2\sqrt { { x }^{ 2 }+{ y }^{ 2 } } =\sqrt { { (2x+1) }^{ 2 }+{ y }^{ 2 } } $$
    $$\Rightarrow 3{y}^{2}-4x=1$$
    By solving above two equation , we get $$x=0 , y=\pm\frac{1}{\sqrt3}$$
    But this point doesnt satisfy the equation $$|2z-1|=|2z+1|$$
    Therefore the number of points which satisfies the equation $$|2z|=|2z+1|=|2z-1|$$ is $$0$$
  • Question 4
    1 / -0
    If both a and b belong to the set $$\displaystyle \left\{ 1,2,3,4 \right\}$$ then the number of equations of the form $$ ax^{2}+bx+1=0$$ having real roots is :
    Solution
    Real roots $$\Rightarrow b^{2}\geq4a$$

    1)let b=1

    $$\Rightarrow 1\geq 4a$$   $$\rightarrow $$no choice for "a" 

    2)let b=2

    $$\Rightarrow 4\geq4a$$

    $$\Rightarrow a=1$$      $$\rightarrow $$one choice 

    3)let b=3

    $$\Rightarrow 9\geq4a$$

    $$\Rightarrow $$ a=1,2         $$\rightarrow $$ 2 choices 

    4)let b=4

    $$\Rightarrow 16\geq4a$$

    $$\Rightarrow a=1,2,3$$        $$\rightarrow $$ $$3$$ choices 

    $$\therefore $$total $$7$$ choices 
  • Question 5
    1 / -0
    If 0 $$\leq$$ argz $$\leq \displaystyle \frac{\pi}{4}$$, then the least value of $$\sqrt 2 |2z - 4|$$ is
    Solution
    $$\sqrt2|2z-4|=2\sqrt2|z-2|$$

    Given that $$0\le argz\le \dfrac{\pi}{4}$$

    The least value of $$|z-2|$$ is $$\sqrt2$$ and occurs at $$argz=\dfrac{\pi}{4}$$

    Therefore the least value of $$\sqrt2|2z-4| = 2 \sqrt2 \times \sqrt2=4$$

    Therefore the correct option is $$C$$
  • Question 6
    1 / -0
    If $$\displaystyle z= (i)^{(i)^{(i)}}$$ where $$ i = \sqrt{-1}$$, then $$z$$ is equal to
    Solution
    $$Z=(i)^{(i)^{(i)}}$$
    $$i=e^{i\pi/2}$$
    $$i^i=e^{i.(i\pi/2)}=e^{-\pi/2}$$
    $$i^{i^i}=e^{i(-\pi/2)}\\ \implies \cos(\pi/2)-i\sin(\pi/2)\\ \implies 0-i=-i$$
  • Question 7
    1 / -0
    If the equation $$\displaystyle 16x^{2}+6kx+4=0$$ has equal roots, then the value of $$k$$ is 
    Solution
    $$\displaystyle 16x^{2}+6kx+4=0$$ has equal roots. 
    Therefore, $$D = 0$$
    $$\displaystyle \Rightarrow (6k)^{2}-4(16)(4)=0$$
    $$\displaystyle \Rightarrow 36k^{2}-256=0$$
    $$\displaystyle \Rightarrow k^{2}=\frac{256}{36}=\frac{64}{9}$$
    $$\displaystyle \Rightarrow k=\pm \frac{8}{3}$$
  • Question 8
    1 / -0
    The roots of the equations $$\displaystyle x^{2}-x-3=0$$ are
    Solution
    Give equation is:
    $$\displaystyle x^{2}-x-3=0$$
    $$\Rightarrow a=1,b=-1,c=-3$$ 
    Discriminant $$\displaystyle D = b^{2}-4ac$$
    $$=(-1)^{2}-4\times 1\times (-3)$$
    $$= 1 + 12 = 13$$
    As the value of $$D$$ is not a perfect square
    $$\therefore$$ the roots of the above equation are irrational.
  • Question 9
    1 / -0
    The quadratic equation $$ax^{2}+bx+c=0$$ will always have imaginary roots if:
    Solution
    The quadratic equation $$ax^{2}+bx+c=0$$ will have imaginary roots if discriminant is negative
    So, $$D$$ must be negative,
    $$\Rightarrow b^2 - 4ac < 0 $$ 
    $$\Rightarrow b^2 < 4ac $$
    Now we need to examine each option, only D will satisfy. 
  • Question 10
    1 / -0
    Which of the following equation has two equal real toots ?
    Solution
    (A) $$3x^{2}+14x-5=0$$
    Then $$b^{2}-4ac=0$$ is if roots are equal
    $$b^{2}-4ac\Rightarrow (14)^{2}-4\times 3\times (-5)=196+60=256> 0$$
    Then roots are not equal
    (B) $$4x^{2}+2x-1=0$$
    Then $$b^{2}-4ac=0$$ is if roots are equal
    $$b^{2}-4ac\Rightarrow (2)^{2}-4\times 4\times (-1)=4+16=20> 0$$
    Then roots are not equal
    (C) $$9x^{2}-6x+1=0$$
    Then $$b^{2}-4ac=0$$ is if roots are equal
    $$b^{2}-4ac\Rightarrow (-6)^{2}-4\times 9\times (1)=36-36=0$$
    Then roots are  equal
    (D) $$x^{2}-5x+4=0$$
    Then $$b^{2}-4ac=0$$ is if roots are equal
    $$b^{2}-4ac\Rightarrow (-5)^{2}-4\times 1\times (4)=25-16=9> 0$$
    Then roots are not equal
    Then option (C) $$9x^{2}-6x+1=0$$ have equal roots
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now