Self Studies
Selfstudy
Selfstudy

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    The product of $$(3-2i)$$ and $$\left(\dfrac { 5 }{ 2 } -4i\right)$$, if $$i=\sqrt { -1 } $$ , is:

  • Question 2
    1 / -0

    The resultant complex number when $$(4+6i)$$ is divided by $$(10-5i)$$ is

  • Question 3
    1 / -0

    The argument of $$\dfrac {1 + i\sqrt {3}}{\sqrt {3} + i}$$ is

  • Question 4
    1 / -0

    The principal amplitude of $$\displaystyle { \left( \sin { { 40 }^{ \circ  }+i\cos { { 40 }^{ \circ  } }  }  \right)  }^{ 5 }$$ is

  • Question 5
    1 / -0

    If $$A = (3 - 4i)$$ and $$B = (9 + ki)$$, where $$k$$ is a constant. 

    If $$AB - 15 = 60$$, then the value of $$k$$ is

  • Question 6
    1 / -0

    The simplest form of $$\sqrt {-18} \times \sqrt {-50}$$ is

  • Question 7
    1 / -0

    Simplify $$(2+8i)(1-4i)-(3-2i)(6+4i)$$

     (Note$$:i=\sqrt{-1}$$)

  • Question 8
    1 / -0

    Given that $$4$$ is a root of the quadratic equation $${x}^{2}-5x+q=0$$. Find the value of $$q$$ and the other root.

  • Question 9
    1 / -0

    The imaginary number $$i$$ is defined such that $$i^2=-1$$. What is the value of $$(1 - i \sqrt {5}) ( 1 + i\sqrt {5})$$?

  • Question 10
    1 / -0

    If $$i = \sqrt {-1}$$, find the values of $$n$$ such that $$i^{n} + (i)^{n}$$ have a positive value.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now