Self Studies

Complex Numbers and Quadratic Equations Test 18

Result Self Studies

Complex Numbers and Quadratic Equations Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find $$(5 + 2i)(5 - 2i)$$
    Solution
    Since $$i^2=-1$$ and $$(a+b)(a-b)=a^2-b^2$$
    $$\Rightarrow (5+2i)(5-2i)$$ $$=(5)^2-(2i)^2$$
    $$=25-4i^2$$
    $$=25-4(-1)$$
    $$=25+4$$
    $$=29$$
  • Question 2
    1 / -0
    What is the smallest integral value of $$k$$ such that $$2x (kx - 4) - x^{2} + 6 = 0$$ has no real roots?
    Solution
    $$2x(kx-4)-x^2+6=0$$
    $$\therefore 2kx^2-8x-x^2+6=0$$
    $$\therefore (2k-1)x^2-8x+6=0$$

    The condition for a quadratic equation to have no real roots is $$Discriminant<0$$
    $$\therefore (-8)^2-4(2k-1)(6)<0$$
    $$\therefore 64-48k+24<0$$

    $$\therefore k>\dfrac{88}{48}$$

    $$\therefore k>\dfrac{11}{6}$$
    So, the smallest integer value of k is $$2$$
    The answer is option (B)

  • Question 3
    1 / -0
    What can you say about the graph of $$y = x^{2} - 12x + 40$$?
    Solution
    To find the intersection point of a curve with the $$X$$-axis, put $$y=0$$.

    $$\therefore x^2-12x+40=0$$

    Calculating the discriminant of the equation,

    $$\Delta = 12^2 - 4(40) = 144-160 = -16 < 0$$

    Since, $$\Delta < 0$$, the equation has no real roots.

    Hence, the curve does not intersect the $$X$$-axis at any point.
  • Question 4
    1 / -0
    For what value of 'p' are the roots of $$x^{2} - 5x = 2(3 + x) - 4p$$ real and equal?
    Solution
    $${ x }^{ 2 }-5x=2(3+x)-4p\\ $$ 
    for roots to be real and equal
    $$D=0$$
    $${ x }^{ 2 }\\ -5x-2x-6+4p=0$$
    $${ x }^{ 2 }\\ -7x+4p-6=0$$
    $$D=0$$
    $$49-4(4p-6)=0$$
    $$49-16p+24=0$$
    $$16p=73$$
    $$p=\dfrac { 73 }{ 16 } $$
  • Question 5
    1 / -0
    Express  $$\dfrac {(-5-i)(-7+8i)}{(2-4i)}$$  in the form of a complex number $$a+bi$$.
    Solution
    We need to express $$\dfrac {(-5-i)(-7+8i)}{(2-4i)}$$ in the form of $$a+bi$$
    On rationalising the given expression as follows:
    $$\dfrac {(-5-i)(-7+8i)(2+4i)}{(2-4i)(2+4i)}$$
    $$=\dfrac {(35-40i+7i-8i^2)(2+4i)}{(4-16i^2)}$$
    $$=\dfrac {(43-33i)(2+4i)}{(4+16)}$$
    $$=\dfrac {(86+172i-66i-132i^2)}{20}$$
    $$=\dfrac {(218+106i)}{20}$$
    $$=\dfrac {109}{10}+\dfrac {53}{10}i$$
  • Question 6
    1 / -0
    If $$a, b, c$$ are real, what is the nature of the roots of the equation $$(a - x)(b - x) = c^{2}$$?
    Solution
    $$\left( a-x \right) \left( b-x \right) ={ c }^{ 2 },\quad a,b,c\epsilon R$$ (real)
    $${ x }^{ 2 }-\left( a+b \right) x+ab={ c }^{ 2 }$$
    $${ x }^{ 2 }-\left( a+b \right) x+ab-{ c }^{ 2 }=0$$
    $$\triangle ={ \left( a+b \right)  }^{ 2 }-4ab+4{ c }^{ 2 }$$
    $$={ \left( a-b \right)  }^{ 2 }+4{ c }^{ 2 }$$
    $${ \left( a-b \right)  }^{ 2 }\ge 0,4{ c }^{ 2 }\ge 0$$
    $$\therefore \triangle \ge 0$$
    $$\therefore x$$ is real.
  • Question 7
    1 / -0
    If $$(2 - i)\times(a - bi) = 2 + 9i$$, where i is the imaginary unit and a and b are real numbers, then a equals
    Solution
    Given, $$(2-i)(a-bi) = 2a-2bi-ai-b $$
    $$= (2a-b)+i(-a-2b)$$
    $$ = 2+9i$$
    By comparing, we get $$2a-b=2$$ and $$a+2b=-9$$
    By solving, we get $$a=-1$$ and $$b=-4$$
  • Question 8
    1 / -0
    What is the approximate magnitude of $$8 + 4i$$?
    Solution
    Magnitude of $$8+4i$$ is 
    $$=\sqrt { { 8 }^{ 2 }+{ 4 }^{ 2 } } $$
    $$=\sqrt { 64+16 } $$
    $$=\sqrt { 80 }$$
    $$ =8.94$$
  • Question 9
    1 / -0
    The real part of $${ \left( 1-\cos { \theta  } +i\sin { \theta  }  \right)  }^{ -1 }$$ is
    Solution
    Given that: $${ \left( 1-\cos { \theta  } +i\sin { \theta  }  \right)  }^{ -1 }=\dfrac{1}{1-\cos\theta+i\sin\theta}$$

    $$=\dfrac{1}{2\sin^2\frac{\theta}{2}+i\cdot 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}=\dfrac{1}{2\sin\frac{\theta}{2}}\cdot \dfrac{1}{\sin\frac{\theta}{2}+i\cos\frac{\theta}{2}}$$ 

    $$=\dfrac{1}{2\sin\frac{\theta}{2}}\cdot \dfrac{1}{\sin\frac{\theta}{2}+i\cos\frac{\theta}{2}}\cdot \dfrac{\sin\frac{\theta}{2}-i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}-i\cos\frac{\theta}{2}}$$, rationalize denominator 

    $$=\dfrac{1}{2\sin\frac{\theta}{2}}(\sin\frac{\theta}{2}-i\cos\frac{\theta}{2})$$

    $$=\dfrac{1}{2}-\dfrac{i}{2}\cot\frac{\theta}{2}$$

    The real part is $$\dfrac{1}{2}$$
  • Question 10
    1 / -0
    The number of real roots of $$\left (x+\dfrac{1}{x}\right)^2-4=0$$ is
    Solution
    $${ (x+\cfrac { 1 }{ x } ) }^{ 2 }-4=0\\ { (x+\cfrac { 1 }{ x } ) }^{ 2 }-{ 2 }^{ 2 }=0\\ { (x+\cfrac { 1 }{ x } -2) }(x+\cfrac { 1 }{ x } +2)=0\\ \therefore x+\cfrac { 1 }{ x } -2=0\\ { x }^{ 2 }-2x+1=0\\ { (x-1) }^{ 2 }=0\\ x=1\\ or\quad \\ x+\cfrac { 1 }{ x } +2=0\\ { x }^{ 2 }+2x+1=0\\ { (x+1) }^{ 2 }=0\\ \therefore x=-1\\ \therefore 2\quad real\quad roots$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now