Self Studies

Complex Numbers and Quadratic Equations Test 19

Result Self Studies

Complex Numbers and Quadratic Equations Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$2,2$$ are the roots of $$x^2+px+b=0$$ and $$1,4$$ are the roots of $$x^2+ax+q=0$$, then roots of the equation $$x^2+ax+b=0$$ are
    Solution
    First equation :

    -p=4$$\Rightarrow $$p=-4  and  b=4(applying sum and product of roots) 

    Second equation :

    $$a=-5$$ and $$q=4$$

    Third equation :

    $$\Rightarrow x^{2}-5x+4=0$$

    $$\Rightarrow (x-4)(x-1)=0$$

    $$\therefore $$x=4,1

    $$\Rightarrow $$real and distinct roots 

  • Question 2
    1 / -0
    If $$z = \dfrac {(\sqrt {3} + i)^{3} (3i + 4)^{2}}{(8 + 6i)^{2}}$$, then $$|z|$$ is equal to
    Solution
    Uisng the identity $$|a+ib|=\sqrt{a^2+b^2}$$
    Since $$\bigg|\dfrac{z_1z_2}{z_3} \bigg|=\dfrac{|z_1||z_2|}{|z_3|}$$
    Therefore
    $$|z| = \bigg|\dfrac {(\sqrt {3} + i)^{3} (3i + 4)^{2}}{(8 + 6i)^{2}}\bigg|$$
    $$\quad =\dfrac{|(\sqrt 3+i)^3||(3i+4)^2|}{|(8+6i)^2|}$$
    $$\quad =\dfrac{|\sqrt 3+i|^3|3i+4|^2}{|8+6i|^2}$$
    $$\quad =\dfrac{2^3\cdot 5^2}{10^2}=2$$ 
  • Question 3
    1 / -0
    The value of $$(a+2i)(b-i)$$ is
    Solution
    The value of $$(a+2i)(b-i) $$
    $$=a(b-i)+2i(b-i)$$
    $$= ab-ai+2bi-2{i}^{2} $$
    $$= ab+(2b-a)i+2$$
  • Question 4
    1 / -0
    If $$l,m$$ are real and $$l\neq m$$, the roots of the equation $$(l-m)x^2-5(l+m)x-2(l-m)=0$$ are-
    Solution
    Let we check the descriminant

    Descriminant =$$25(l+m)^{2}+4(l-m)^{2}$$ which is always >0 

    $$\therefore $$it has real and unequal roots 
  • Question 5
    1 / -0
    If $$a<c<b$$ then the roots of the equation $$(a-b) ^2x^2+2(a+b-2c)x+1=0$$ are-
    Solution
    $$a<c<b$$
    $${ \left( a-b \right)  }^{ 2 }{ x }^{ 2 }+2\left( a+b-2c \right) x+1=0$$
    $$\triangle =4{ \left( a+b-2c \right)  }^{ 2 }-4{ \left( a-b \right)  }^{ 2 }$$
    $$=4{ \left( \left( a-c \right) +\left( b-c \right)  \right)  }^{ 2 }-4{ \left( \left( a-c \right) -\left( b-c \right)  \right)  }^{ 2 }$$
    $$=4\left( 4\left( a-c \right) \left( b-c \right)  \right) $$
    $$=16\left( a-c \right) \left( b-c \right) $$
    $$a-c<0$$ & $$b-c>0\quad \left( \because a<c<b \right) $$
    $$\therefore \triangle <0$$
    $$\therefore $$Roots of given equation are imaginary.
  • Question 6
    1 / -0
    Total number of integral values of $$a$$ such that $$x^2+ax+a+1=0$$ has integral roots is
    Solution
    $$for\quad a\quad equation\quad { ax }^{ 2 }+bx+c=0\quad to\quad have\quad integer\quad roots\quad conditions\quad are\quad \\ a=1,\quad b\in I,\quad c\in I\quad and\quad { b }^{ 2 }-4ac\quad is\quad a\quad perfect\quad square\\ { x }^{ 2 }+ax+a+1=0\\ a\in I\quad \therefore a+1\in I\\ { a }^{ 2 }-4(a+1)is\quad perfect\quad square\\ \therefore { a }^{ 2 }-4(a+1)\quad is\quad perfect\quad square\\ \therefore { a }^{ 2 }-4a-4={ p }^{ 2 }\\ { a }^{ 2 }-4a-4-{ p }^{ 2 }=0\\ { (a-2) }^{ 2 }-8-{ p }^{ 2 }=0\\ { (a-2) }^{ 2 }={ p }^{ 2 }+8\\ \therefore { p }^{ 2 }=1\\ { (a-2) }^{ 2 }=9\\ { (a-2) }^{ 2 }={ 3 }^{ 2 }\\ \therefore a-2=3\quad or\quad a-2=-3\\ a=5\quad or\quad a=-1\\ \therefore 2\quad values\quad of\quad a$$
  • Question 7
    1 / -0
    If $$a < c < b$$ then the roots of the equation $$(a-b)x^2+2(a+b-2c)x+1=0$$ are:
    Solution

  • Question 8
    1 / -0
    The roots of the equation $$(b+c)x^2-(a+b+c)x+a=0$$ $$(a,b,c\ \epsilon \ Q, b+c \neq a)$$ are
    Solution
    $$(b+c){ x }^{ 2 }-(a+b+c)x+a=0\\ a,b,c\in q\\ b+c\neq a\\ D={ (a+b+c) }^{ 2 }-4(a)(b+c)\\ ={ a }^{ 2 }+{ b }^{ 2 }+c^{ 2 }-2ab-2ac+2bc\\ ={ (a-b-c) }^{ 2 }\\ as\quad b+c\neq a\\ \therefore D>0$$ always 
    $$\therefore$$ roots are rational and distinct as $$D$$ is a perfect square and greater than $$0$$
  • Question 9
    1 / -0
    Let $$f(x)=x^3+3x^2+9x+6\sin x$$ then the roots of the equation 
    $$\dfrac 1{x-f(1)}+\dfrac 2{x-f(2)}+\dfrac 3{x-f(3)}=0$$ has
    Solution
    Given $$f\left( x \right) ={ x }^{ 3 }+3{ x }^{ 2 }+9x+6\sin { x } $$
    $$f\left( 0 \right) =0$$
    $$f'\left( x \right) =3{ x }^{ 2 }+6x+9+6\cos { x } $$
    $$=3{ \left( x+1 \right)  }^{ 2 }+6\left( 1+\cos { x }  \right) $$
    $$f'\left( x \right) >0$$
    $$\therefore f\left( x \right) $$ is monotonically increasing graph
    $$\therefore f\left( 3 \right) >f\left( 2 \right) >f\left( 1 \right) >f\left( 0 \right) $$
    $$\therefore f\left( 3 \right) >f\left( 2 \right) >f\left( 1 \right) >0$$ ($$\because $$ if $${ x }_{ 1 }>{ x }_{ 2 }\Rightarrow f\left( { x }_{ 1 } \right) >f\left( { x }_{ 2 } \right) $$)
    Let $$f\left( 1 \right) =a;f\left( 2 \right) =9;f\left( 3 \right) =c$$
    $$g\left( x \right) =\cfrac { 1 }{ x-f\left( 1 \right)  } +\cfrac { 2 }{ x-f\left( 2 \right)  } +\cfrac { 3 }{ x-f\left( 3 \right)  } =0$$
    $$\left( x-b \right) \left( x-c \right) +2\left( x-a \right) \left( x-c \right) +3\left( x-b \right) \left( x-a \right) =0$$
    $$\left( x\neq a,b,c \right) $$
    $$3{ x }^{ 2 }-\left( b+c+2a+2c+3b+3a \right) x+\left( bc+2ac+3ab \right) =0$$
    $$3{ x }^{ 2 }-\left( 5a+4b+3c \right) x+\left( 3ab+2ac+bc \right) =0$$
    $$\triangle ={ \left( 5a+4b+3c \right)  }^{ 2 }-4\left( 3 \right) \left( 3ab+bc+2ac \right) $$
    $$=25{ a }^{ 2 }+16{ b }^{ 2 }+a{ c }^{ 2 }+4ab+6ac+12bc$$
    $$\therefore \triangle >0\quad \left( \because a>b>c>0 \right) $$
    $$\therefore g\left( x \right) $$ has two distinct real roots.
  • Question 10
    1 / -0
    If $$l,m,n $$ are real and $$l \neq m$$, the roots of the equation $$(l-m)x^2-5(l+m)x-2(l-m)=0$$ are-
    Solution
    $$l,m,n\in R\\ l\neq m\\ (l-m){ x }^{ 2 }-5(l+m)x-2(l-m)=0\\ D={ (-5(l+m)) }^{ 2 }+8{ (l-m) }^{ 2 }\\$$
    As $${ (l+m) }^{ 2 }$$ and $${ (l-m) }^{ 2 }$$ both greater than zero as $$l\neq m$$ so $$D$$ greater than zero so roots are real and distinct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now