Given $$f\left( x \right) ={ x }^{ 3 }+3{ x }^{ 2 }+9x+6\sin { x } $$
$$f\left( 0 \right) =0$$
$$f'\left( x \right) =3{ x }^{ 2 }+6x+9+6\cos { x } $$
$$=3{ \left( x+1 \right) }^{ 2 }+6\left( 1+\cos { x } \right) $$
$$f'\left( x \right) >0$$
$$\therefore f\left( x \right) $$ is monotonically increasing graph
$$\therefore f\left( 3 \right) >f\left( 2 \right) >f\left( 1 \right) >f\left( 0 \right) $$
$$\therefore f\left( 3 \right) >f\left( 2 \right) >f\left( 1 \right) >0$$ ($$\because $$ if $${ x }_{ 1 }>{ x }_{ 2 }\Rightarrow f\left( { x }_{ 1 } \right) >f\left( { x }_{ 2 } \right) $$)
Let $$f\left( 1 \right) =a;f\left( 2 \right) =9;f\left( 3 \right) =c$$
$$g\left( x \right) =\cfrac { 1 }{ x-f\left( 1 \right) } +\cfrac { 2 }{ x-f\left( 2 \right) } +\cfrac { 3 }{ x-f\left( 3 \right) } =0$$
$$\left( x-b \right) \left( x-c \right) +2\left( x-a \right) \left( x-c \right) +3\left( x-b \right) \left( x-a \right) =0$$
$$\left( x\neq a,b,c \right) $$
$$3{ x }^{ 2 }-\left( b+c+2a+2c+3b+3a \right) x+\left( bc+2ac+3ab \right) =0$$
$$3{ x }^{ 2 }-\left( 5a+4b+3c \right) x+\left( 3ab+2ac+bc \right) =0$$
$$\triangle ={ \left( 5a+4b+3c \right) }^{ 2 }-4\left( 3 \right) \left( 3ab+bc+2ac \right) $$
$$=25{ a }^{ 2 }+16{ b }^{ 2 }+a{ c }^{ 2 }+4ab+6ac+12bc$$
$$\therefore \triangle >0\quad \left( \because a>b>c>0 \right) $$
$$\therefore g\left( x \right) $$ has two distinct real roots.