Self Studies

Complex Numbers and Quadratic Equations Test -2

Result Self Studies

Complex Numbers and Quadratic Equations Test -2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let x, y ∈ R,then x + iy is a non real complex number if

    Solution

    If a complex number has to be a  non real complex number  then its imaginary part should not be zero ⇒ iy ≠ 0 ⇒ y ≠ 0

  • Question 2
    1 / -0

    Let x, y ∈ R, then x + iy is a purely imaginary number if

    Solution

    Purely imaginary number is a complex number which has only imaginary part ( iy) 

    But if  y=0 the complex number iy will become 0 which is real.

    Hence the condition for a number to be purely imaginary is x=0 and y ≠ 0

  • Question 3
    1 / -0
    The roots of the equation $${ \left( z+\alpha \beta  \right)  }^{ 3 }={ \alpha  }^{ 3 }$$ represent the vertices of a triangle, one of whose sides is of length
    Solution
    $$z_1=\alpha-\alpha \beta,z_2=\alpha\omega-\alpha \beta,z_3=\alpha\omega^2-\alpha \beta$$
    Let vertices be denoted by $$A,B,C$$
    Length of $$AB=|z_1-z_2|=|\alpha||1-\omega|=|\alpha|\left|1-\dfrac{-1-i\sqrt{3}}{2}\right|=\sqrt{3}|\alpha|$$
    Length of $$BC=|z_2-z_1|=|\alpha|\left|1-\dfrac{-1+i\sqrt{3}}{2}\right|=\sqrt{3}|\alpha|$$
    Length of $$BC=|z_3-z_1|=|\alpha||\omega|\left|\dfrac{-1+i\sqrt{3}}{2}\right|\left|1-\dfrac{-1+i\sqrt{3}}{2}\right|=\sqrt{3}|\alpha|$$
    Hence option B is correct.
  • Question 4
    1 / -0
    For a quadratic equation if $$D < 0$$ then which of the following is true?
    Solution
    For a quadratic equation, if $$D < 0$$ then real roots do not exist.
  • Question 5
    1 / -0
    Identify the condition for Imaginary Roots:
    Solution
    For Imaginary roots, the discriminant is less than zero, that is $$D < 0$$. 
  • Question 6
    1 / -0

    If the value of '$$b^2-4ac$$' is greater than zero, the quadratic equation $$ax^2+bx+c=0$$ will have


    Solution
    $${ b }^{ 2 }-4ac>0$$
    $$\therefore \triangle >0$$
    So, two equal real roots or only one real root.
  • Question 7
    1 / -0
    If $$a, b, c$$ are real and $$b^2- 4ac $$ is perfect square then the roots of the equation $$ax^2+bx+c=0$$, will be:
    Solution
    Given that the discriminant $$=b^{2}-4ac $$  is a perfect square 

    Let $$b^{2}-4ac =k^{2}$$ 

    $$\Rightarrow $$ Roots $$=\dfrac {-b\pm \sqrt {k^{2}}}{2a}$$

    $$\Rightarrow$$ roots $$=\dfrac {-b\pm k} {2a}$$

    As given $$a, b, c$$ are real 
    $$\Rightarrow $$ Roots are rational and distinct.
  • Question 8
    1 / -0

    If the value of '$$b^2-4ac$$' is less than zero, the quadratic equation $$ax^2+bx+c=0$$ will have


    Solution
    $${ b }^{ 2 }-4ac<0$$
    $$\therefore \triangle <0$$
    So no real roots.
  • Question 9
    1 / -0
    When will the quadratic equation $$ax^2+bx+c=0$$ NOT have Real Roots?
    Solution
    We learnt that the quadratic equation $$ax^2+bx+c=0$$ will NOT have Real Roots when $$b^2-4ac< 0 $$. Option c is correct.
  • Question 10
    1 / -0
    If $$(1+i)^{-20}=a+ib$$, then the values of $$a$$ and $$b$$ are
    Solution

    $$(1+i)^{-20}\\((1+i)^2){-10}\\(1+i^2+2i)^{-10}\\=(2i)^{-10}\\=(\frac{2^{-10}}{i^10})\\=-2^{-10}\\\therefore \>by\>comparison\>a\>=\>-2^{-10},\>b=0$$

  • Question 11
    1 / -0
    The number of solution of $$z^2 + \bar{z} = 0$$ is
    Solution
    Let $$z=x+iy$$.
    Now,
    $$z^2+\overline{z}=0$$
    or, $$x^2-y^2+2ixy+(x-iy)=0$$
    or, $$(x^2-y^2+x)+i(2xy-y)=0$$
    Now comparing the real and imaginary part both sides we get,
    $$x^2-y^2+x=0$$.....(1) and $$2xy-y=0$$.....(2).
    From (2) we get, $$x=\dfrac{1}{2}$$ or $$y=0$$.
    Now $$x=\dfrac{1}{2}$$ gives from (1) we get, $$y=\pm \dfrac{\sqrt{3}}{2}$$.
    And $$y=0$$ gives from (1) we get, $$x=0, 1$$.
    So the solution s are $$(0,0), (1,0), \left(\dfrac{1}{2},\pm \dfrac{\sqrt{3}}{2}\right)$$.
    So we have $$4$$ solutions.
  • Question 12
    1 / -0
     For any complex number $$z$$ the minimum value of $$|z|+|z-2013i|$$ is...
    Solution
    Q:- minimum value of $$\left | z \right |+\left | z-2013i \right |$$
    Solution For ZEG
    $$ \left | 2013i \right | = \left | z+(2013i-z) \right | \leqslant \left | z \right |+\left | 2013i-z \right |$$
    $$ \Rightarrow 2013 \leqslant \left | z \right |+\left | z-2013i \right |$$
    $$ \Rightarrow $$ minimum value of $$ \left | z \right |+\left | z-2013i \right | $$ is
    2013
    which is attained when $$ z = i$$
    so, c is correct option.
    $$ x^{2}+y^{2} \leqslant  1 $$ & $$ y^2 \leqslant  1-x . $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now