Self Studies

Complex Numbers and Quadratic Equations Test 20

Result Self Studies

Complex Numbers and Quadratic Equations Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a,b \in R$$ then the equation $$x^2-abx-a^2=0$$ has 
    Solution
    Roots of the given equation are :$$\dfrac {ab\pm \sqrt{b^{2}+4}}{2}$$

    Roots =$$a\dfrac {(b\pm\sqrt {b^{2}+4) }}{2}$$

    Given $$a, b\in R$$

    Here $$\sqrt{b^{2}}=b<\sqrt {b^{2}+4}$$

    $$\therefore $$one root is positive and one root is negative 
  • Question 2
    1 / -0
    If $$b$$ and $$c$$ are odd integers, then the equation $$x^2+bx+c=0$$ has:
    Solution

  • Question 3
    1 / -0
    If $$b$$ and $$c$$ are odd integers, then the equation $$x^2+bx+c=0$$ has 
    Solution
    $${ x }^{ 2 }+bx+c=0$$
    b,c are odd integers
    roots, $$x=-b\pm \sqrt { { b }^{ 2 }-4c } $$
    In order to have integer roots i.e., assume roots are integers
    $${ b }^{ 2 }-4c={ m }^{ 2 },m\epsilon z$$
    $${ b }^{ 2 }-{ m }^{ 2 }=4c$$
    if  $${ b }^{ 2 }-{ m }^{ 2 }$$ is divisible by $$2$$. Then both b,m are even or both m,b are odd
    $$\therefore m$$ is odd ($$\because b$$ is odd)
    Let $$b=2k+1,m=2n+1,k,n\epsilon z$$
    $$4\left( { k }^{ 2 }-{ n }^{ 2 } \right) +4\left( k-n \right) =4c$$
    $$c=\left( k-n \right) \left( k+n+1 \right) $$
    if $$k-n$$ is odd, then $$k+n+1$$ is even.
    (Or) if $$k-n$$ is even then $$k+n+1$$ is odd
    $$\therefore $$C will be even
    But C cannot be even as it is odd (Given)
    $$\therefore $$ roots of $${ x }^{ 2 }+bx+c$$ are not integers.
  • Question 4
    1 / -0
    If Arg $$(z + i)\, -$$ Arg $$(z - i)$$ $$= \dfrac{\pi}{2}$$, then $$z$$ lies on a ..........
    Solution
    Putting z = x+iy,

    $${tan}^{-1}\dfrac{y+1}{x}$$  -  $${tan}^{-1}\dfrac{y-1}{x}$$ = $$\pi$$/2

    $$\Rightarrow$$ 1 + ($$\dfrac{y+1}{x})$$($$\dfrac{y-1}{x}$$) = 0

    $$\Rightarrow$$ $$x^2 +  y^2$$ = 1

    It is a circle of center coinciding with origin and radius 1 units.

    Hence, option A is correct.
  • Question 5
    1 / -0
    Let $$a,b,c \in R$$ such that $$4a+2b+c=0$$ and $$ab>0$$.
    Then the equation $$ax^2+bx+c=0$$ has
    Solution
    $$ab>0\\ a,b,c\in R\\ f(x)={ ax }^{ 2 }+bx+c\\ f(2)=4a+2b+c=0\\ \therefore x=2\quad is\quad a\quad root\quad of\quad f(x)\\ \therefore \quad f(x)\quad has\quad real\quad roots$$
  • Question 6
    1 / -0
    If the equation $$x^3 - 3ax^2 + 3bx-  c = 0$$ has positive and distinct roots, then
    Solution

  • Question 7
    1 / -0
    The number of real roots of the equation $$|x| ^2-3|x|+2=0$$ is
    Solution
    $${ |x| }^{ 2 }-3|x|+2=0\\ let\quad |x|\quad be\quad t,\quad t\ge 0\\ { t }^{ 2 }-3t+2=0\\ (t-2)(t-1)=0\\ \therefore t=2\ or\ 1\\ where\quad t=1\\ |x|=1\\ \therefore x=+1,-1\\ when\quad t=2\\ |x|=2\\ \therefore x=+2,-2\\ so\quad 4\quad real\quad roots$$
  • Question 8
    1 / -0
    If $$c > 0 $$ and $$b > c$$ then $$x ^2+bx-c=0$$ will have:
  • Question 9
    1 / -0
    Let $$a > 0, b > 0,c >0 $$ then both roots of the equation $$ ax^2 + bx + c = 0$$
    Solution
    Since, $$a,\,b,\,c>0$$ and $$ax^2+bx+c=0$$ then,
    $$\Rightarrow$$  $$x=\dfrac{-b}{2a}\pm\dfrac{\sqrt{b^2-4ac}}{2a}$$

    $$Case\,1:$$ When $$b^2-4ac>0$$
    $$\Rightarrow$$  $$x=\dfrac{-b}{2a}-\dfrac{\sqrt{b^2-4ac}}{2a}$$ and $$\dfrac{-b}{2a}+\dfrac{\sqrt{b^2-4ac}}{2a}$$ both roots are negative.

    $$Case\,2:$$  Ehen $$b^2-4ac=0$$
    $$\Rightarrow$$  $$x=\dfrac{-b}{2a}$$ i.e., both roots are equal and negative.

    $$Case\,3:$$  When $$b^2-4ac<0$$
    $$\Rightarrow$$  $$x=\dfrac{-b}{2a}\pm i\dfrac{\sqrt{4ac-b^2}}{2a}$$ have negative real part.
    $$\therefore$$  From above discission both roots have negative real parts.
  • Question 10
    1 / -0
    If $$arg(z) < 0$$, then $$arg(-z)-arg(z)=$$
    Solution
    Let $$Z=re^{i\theta_1}$$
    $$-Z=-re^{i\theta_1}$$
    $$\implies -a\cos\theta_1-ib\sin\theta_1$$
    $$\implies -a\cos(\pi+\theta_1)-ib\sin(\pi+\theta_1)$$
    $$\implies re^{i(\pi+\theta_1)}$$
    $$arg(-Z)-arg(Z)$$
    $$\implies \pi+\theta_1-\theta_1\\ \implies \pi$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now