Self Studies

Complex Numbers and Quadratic Equations Test 21

Result Self Studies

Complex Numbers and Quadratic Equations Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the equations $$x^2 + bx + c = 0$$ and $$2x^2 + (b + 1)x + c + 1 = 0$$ select the correct alternative
    Solution
    $$x^2 + bx + c = 0$$
    Applying dharacharya's formula
    $$x = \dfrac{-b \pm \sqrt{b^2 - 4c}}{2}$$
    $$2x^2 + (b + 1) x + c+ 1 = 0$$
    $$x = \dfrac{-b- 1 \pm \sqrt{(b + 1)^2 - 8 (c + 1)}}{4}$$
    if $$b^2 - 4c = 0 $$ for integral roots
    then $$(b + 1)^2 - 8 (c + 1) \neq 0$$
    that mean's only one equation can have integral root.
  • Question 2
    1 / -0
    Consider the equation $$x^3 - nx + 1 =0$$, $$n\ \epsilon \  N$$ , $$n \geq  3$$. Then
    Solution

  • Question 3
    1 / -0
    The equation $$x^2 + nx + m = 0,$$ where $$n, m \in  I$$ can not have:
    Solution

  • Question 4
    1 / -0
    If $$x=1+i$$ is a root of the equation $$x^3-ix+1-i=0$$, then the other real root is
    Solution
    Given equation is 
    $${ x }^{ 3 }-ix+1-i=0$$
    $${ x }^{ 3 }+1-i(x+1)=0$$
    $$(x+1)({ x }^{ 2 }-x+1-i)=0$$
    $$\therefore $$ Real root of given equation is $$x=-1$$
  • Question 5
    1 / -0
    If the argument of a complex number is $$\cfrac { \pi  }{ 2 } $$, then the number is:
    Solution
    Let the complex number be $$z$$.
    Hence
    $$z=|z|e^{i\arg(z)}$$ 
    $$=|z|e^{i\tfrac{\pi}{2}}$$
    $$=|z|\left(\cos\dfrac{\pi}{2}+i\sin\dfrac{\pi}{2}\right)$$
    $$=i|z|$$
    Hence the complex number is purely imaginary.
  • Question 6
    1 / -0
    Total number of integral values of $$a$$ so that $$x^2-(a+1)x+a-1=0$$ has integral roots is equal to
    Solution
    For integer roots $$b^{ 2 }-4ac$$ should be a perfect square.
    $$x^{ 2 }-(a+1)x+(a-1)=0\\ \Longrightarrow b^{ 2 }-4ac={ (a+1) }^{ 2 }-4(a-1)\\ \quad \quad \quad \quad \quad =a^{ 2 }-2a+5\\ or\quad p^{ 2 }=a^{ 2 }-2a+5\\ \therefore \quad for\quad a=1, a^{ 2 }-2a+5$$ 
    is a perfect square.
    $$\therefore$$ for $$a=1,a^{ 2 }-2a+5=4$$,
    Only one integral value of $$a$$.

  • Question 7
    1 / -0
    If $$\overline { z } $$ lies in the third quadrant then $$z$$ lies in the
    Solution
    Fact:  $$\overline z$$ is image of $$z$$ in $$x$$-axis
    So if $$\overline z$$ lies in third quadrant then $$z$$ will lie in second quadrant 
  • Question 8
    1 / -0
    If $$a,b,c,d$$ are four consecutive terms of an increasing A.P, then the roots of the equation 
    $$(x-a)(x-c)+2(x-b)(x-d)=0$$ are
    Solution
    Let $$a<b<c<d$$ be increasing A.P.
    Let $$f\left( x \right) =(x-a)(x-c)+2(x-b)(x-d)\\ f\left( b \right) =(b-a)(b-c)<0$$
    and
    $$f\left( d \right) =(d-a)(d-c)>0$$
    Hence $$f\left( x \right) =0$$ has roots in $$(b,d)$$.
    Also $$f\left( a \right) f\left( c \right) <0$$.
    So the other root lies in $$(a,c)$$.
    Therefore roots are Real and Distinct.
  • Question 9
    1 / -0
    $$p + iq = (2 - 3i) (4 + 2i)$$ then $$q$$ is
    Solution
    $$p+iq=(2-3i)(4+2i)$$
    $$=(8+4i-12i+6)$$
    $$=14-8i$$
    Hence comparing the real parts give us $$p=14$$ and comparison of the imaginary parts give us $$q=-8$$. 
  • Question 10
    1 / -0
    If $${ x }^{ 2 }+{ y }^{ 2 }=1$$ then value of $$\dfrac { 1+x+iy }{ 1+x-iy } $$ is
    Solution
    Since $$x^2+y^2=1$$
    So let $$x=\cos\theta$$ and $$y=\sin\theta$$
    $$\therefore \dfrac{1+x+iy}{1+x-iy}=\dfrac{(1+\cos\theta)+i\sin\theta}{(1+\cos\theta)-i\sin\theta}$$

    $$=\dfrac{2\cos^2\cfrac{\theta}{2}+2i\sin\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}{2\cos^2\cfrac{\theta}{2}-2i\sin\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}$$

    $$=\dfrac{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}{\cos\cfrac{\theta}{2}-i\sin\cfrac{\theta}{2}}$$ 

    $$=\dfrac{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}{\cos\cfrac{\theta}{2}-i\sin\cfrac{\theta}{2}}\times$$ $$\dfrac{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}{\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}}$$

    $$=\dfrac{\left(\cos\cfrac{\theta}{2}+i\sin\cfrac{\theta}{2}\right)^2}{\cos^2\cfrac{\theta}{2}-i^2\sin^2\cfrac{\theta}{2}}$$

    $$=\dfrac{\cos^2\cfrac{\theta}{2}+i^2\sin^2\cfrac{\theta}{2}+2i\cos\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}{\cos^2\cfrac{\theta}{2}+\sin^2\cfrac{\theta}{2}}$$

    $$=\dfrac{\cos^2\cfrac{\theta}{2}-\sin^2\cfrac{\theta}{2}+2i\cos\cfrac{\theta}{2}\cos\cfrac{\theta}{2}}{1}$$

    $$=\cos\theta+i\sin\theta=x+iy$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now