Self Studies

Complex Numbers and Quadratic Equations Test 22

Result Self Studies

Complex Numbers and Quadratic Equations Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x + i  y = \dfrac{3}{2 + cos  \theta + i  sin  \theta}$$, then $$x^2 + y^2$$ is equal to
    Solution
    $$x + i   y = \dfrac{3}{2 + cos  \theta + i  sin  \theta} = \dfrac{3 (2 + cos \theta - i  sin  \theta)}{(2 + cos  \theta)^2 - i^2 sin^2 \theta}$$
    $$= \dfrac{3(2+cos \theta-i sin \theta)}{(2+cos \theta)^2+sin \theta}$$

    $$= \dfrac{6 + 3 cos \theta - 3 i   sin  \theta}{4 + cos^2 \theta + 4 cos \theta + sin^2 \theta}$$ 

    $$= \dfrac{6 + 3 cos \theta - 3 i sin  \theta}{5 + 4 cos \theta}$$

    $$= \left( \dfrac{6 + 3 cos \theta}{5 + 4 cos \theta} \right ) + \left( \dfrac{-3 sin \theta}{5 + 4 cos \theta} \right )$$
    On equating real and imaginary parts, we get
    $$x = \dfrac{3 (2 + cos \theta)}{5 + 4 cos \theta}$$
    and $$y = \dfrac{-3 sin \theta}{5 + 4 cos \theta}$$

    $$\therefore x^2 + y^2 = \dfrac{9 [4 + cos^2 \theta + 4 cos \theta + sin^2 \theta]}{(5 + 4 cos \theta)^2}$$

                      $$= \dfrac{9}{5 + 4 cos \theta} = 4 \left( \dfrac{6 + 3 cos \theta}{5 + 4 cos^2 \theta} \right ) - 3$$
                      $$= 4x - 3$$
    Hence, option B is correct.
  • Question 2
    1 / -0
    Let $$z = x + iy$$, where $$x$$ and $$y$$ are real. The points $$(x, y)$$ in the $$X-Y$$ plane for which $$\dfrac {z + i}{z - i}$$ is purely imaginary lie on
    Solution
    Let $$z = x + iy$$
    $$\therefore \dfrac {z + i}{(z - i)}=\dfrac{x+iy+i}{x+iy-i}$$ 
                       $$= \dfrac {(x + i(y + 1))}{(x - i(1 - y))}\times \dfrac {(x + i(1 - y))}{(x + i(1 - y))}$$ 
                       $$=\dfrac {x^{2} + (y^{2} - 1)+2ix}{x^{2} + (1 - y)^{2}} $$
    Since, $$\dfrac{z+i}{z-i}$$ should be purely imaginary
    $$\therefore Re\left (\dfrac {z + i}{z - i}\right ) = 0$$ 
    $$\implies \dfrac {x^{2} + (y^{2} - 1)}{x^{2} + (1 - y)^{2}} = 0$$ 
    $$\implies x^{2}+y^{2}-1=0$$
    $$\implies x^{2} + y^{2} = 1$$ which is the equation of a circle
    Hence, $$(x,y)$$ lie on a circle.
  • Question 3
    1 / -0
    The roots of the equation $${ x }^{ 2 }-8x+16=0$$
    Solution
    Given equation is $$x^2-8x+16=0$$
    Discriminant is $${(-8)}^2-4\times 1\times 16=64-64=0$$
    Since the discriminant is zero, the quadratic equation has equal and real roots.
  • Question 4
    1 / -0
    The expression $$\dfrac {(1 + i)^{n}}{(1 - i)^{n - 2}}$$ equals.
    Solution
    $$(1 - i) = (1-i)\times \dfrac{(1+i)}{(1+i)} = \dfrac{1-i^{2}}{(1+i)} = \dfrac {2}{(1 + i)}$$
    $$\therefore \dfrac {(1 + i)^{n}}{(1 - i)^{n - 2}} = \dfrac {(1 + i)^{n}}{2^{n - 2}} . (1 + i)^{n - 2}$$ 
                             $$= \dfrac {(1 + i)^{2(n - 1)}}{2^{n - 2}}$$ 

                             $$= \dfrac {(1+i^{2}+2i)^{n - 1}}{2^{n - 2}}$$ 

                             $$= \dfrac {(2i)^{n - 1}}{2^{n - 2}}$$ 
                             $$= 2i^{n - 1} = -2i^{n + 1}$$
    Hence, $$\therefore \dfrac {(1 + i)^{n}}{(1 - i)^{n - 2}} = - 2 i^{n+1}$$
  • Question 5
    1 / -0
    The value of $$a$$ for which the quadratic equation $$3{x}^{2} + 2{a}^{2}x + 2x + {a}^{2} - 3a + 2 = 0$$ possesses roots of opposite signs lies in
    Solution
    $$3{ x }^{ 2 }+2{ a }^{ 2 }x+2x+{ a }^{ 2 }-3a+2=0$$

    $$3{ x }^{ 2 }+2(a^{ 2 }+1)x+({ a }^{ 2 }-3a+2)=0$$

    Condition for real distinct roots $$\Rightarrow \quad D>0$$
    $${ b }^{ 2 }-4ac>0$$

    $$4{ \left( { a }^{ 2 }+1 \right)  }^{ 2 }-4\times 3\times ({ a }^{ 2 }-3a+2)>0$$

    $$4({ a }^{ 4 }+1+2{ a }^{ 2 })-(12{ a }^{ 2 }-36a+24)>0$$

    $$4{ a }^{ 4 }+4+8{ a }^{ 2 }-12{ a }^{ 2 }+36a-24>0$$

    $$4{ a }^{ 4 }-4{ a }^{ 2 }+36a-20>0$$

    $${ a }^{ 4 }-{ a }^{ 2 }+9a-5>0\longrightarrow (i)$$

    If roots are of opposite signs then product of roots $$<0$$

    $$\cfrac { constant }{ coefficient\quad of\quad { x }^{ 2 } } <0\Rightarrow \cfrac { { a }^{ 2 }-3a+2 }{ 3 } <0$$

    $${ a }^{ 2 }-3a+2<0$$

    $${ a }^{ 2 }-2a-a+2<0$$

    $$a\left( a-2 \right) -1\left( a-2 \right) <0\Rightarrow \left( a-2 \right) \left( a-1 \right) <0$$

    $$\left( a-2 \right) >0$$ and $$\left( a-1 \right) <0$$   or   $$\left( a-2 \right) <0$$ and $$\left( a-1 \right) >0$$

    $$a>2$$ and $$a<1$$  or  $$a<2$$ and $$a>1$$

    $$a<1$$ and $$a>2\Rightarrow 2<a<1$$ which is not possible 

    $$\therefore \quad a>2$$ & $$a<1$$ is rejected

    $$\therefore a\in \left( 1,2 \right) $$

    Hence, C is correct.
  • Question 6
    1 / -0
    If $$z_1$$ and $$z_2$$ are complex numbers with $$|z_1|=|z_2|$$, then which of the following is/are correct?
    1. $$z_1=z_2$$
    2. Real part of $$z_1 =$$ Real part of $$z_2$$
    3. Imaginary part of $$z_1 =$$ Imaginary part of $$z_2$$
    Select the correct answer using the statements given below :
    Solution
    Solution:
    We have, $$|z_1|=|z_2|$$
    Let, 
    $$z_1=x_1+iy_1$$ and $$z_2=x_2+iy_2$$
    $$\because|z_1|=|z_2|$$
    $$\therefore x_1^2+y_1^2=x_2^2+y_2^2$$
    or, $$(x_1^2-x_2^2)+(y_1^2-y_2^2)=0$$
    or, $$x_1^2-x_2^2=0$$ and $$y_1^2-y_2^2=0$$
    or, $$x_1=\pm x_2$$ and $$y_1=\pm y_2$$
    Let, $$z_1=1+i$$ then $$z_2=-1-i$$
    $$|z_1|=|z_2|=\sqrt2$$
    But, $$Re(z_1)\neq Re(z_2)$$ and $$Im(z_1)\neq Im(z_2)$$ and $$z_1\neq z_2$$
    Hence, D is the correct option.
  • Question 7
    1 / -0
    Let a, b be non-zero real numbers. Which of the following statements about the quadratic equation $$ax^2 + (a+b) x + b = 0$$ is necessarily true?
    (I) It has at least one negative root.
    (II) It has at least one positive root.
    (III) Both its roots are real.
    Solution
    Roots of the given equation are,

    $$=\dfrac { -(a+b)\pm \sqrt { (a+b)^{ 2 }-4ab }  }{ 2a } $$

    $$ =\dfrac { -(a+b)\pm (a-b) }{ 2a }$$ 

    We get the roots as,
    $$ -\dfrac { b }{ a } , -1$$
    So, both the roots are real and atleast one negative root.
    Hence, B is correct.
  • Question 8
    1 / -0
    The quadratic equation $${ x }^{ 2 }+bx+4=0$$ will have real roots if
    Solution
    In any quadratic equation, real roots exist if discriminant is greater than or equal to zero.
    So for $$x^2+bx+4=0$$
    Discriminant is $$={ b }^{ 2 }-4\times 1\times 4$$
    So, $$b^{2}-16\geq 0$$ 
    $$\Rightarrow b\ge 4,b\le -4$$
  • Question 9
    1 / -0
    The roots of the equation $$2a^2x^2 - 2abx +b^2=0$$ when a < 0 and b > 0 are : 
    Solution
    For an equation $$ ax^2 \ + \ bx \ +c =0 $$, where $$ a \neq \ 0 $$ to have real roots, D must be greater than or equal to 0, where 
    $$D = b^2-4ac$$

    In the given equation, $$2a^2 x^2 \ - \ 2abx \ + \ b^2 =0$$
    $$D=(-2ab)^2-4\times(2a^2)\times(b^2)$$
    $$\Rightarrow D= -6 a^2 b^2$$       
    $$\because a,b \neq 0 \  \Rightarrow -6a^2 b^2$$ is always negative
    We see that $$D$$ is strictly negative  
    Hence, the equation always has complex roots.
  • Question 10
    1 / -0
    If ................. then the roots of the quadratic equation are equal.
    Solution
    There are two values of $$x$$ which satisfy a quadratic equation.

    If the equation reads $$ax^2 + bx + c = 0$$, the determinant is $$D = \sqrt{b^2 - 4ac}$$

    The two values of $$x$$ are given by $$x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \cfrac{-b \pm \sqrt{D}}{2a}$$

    As can be concluded from the equation, we will have equal roots if $$D = 0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now