Self Studies

Complex Numbers and Quadratic Equations Test 23

Result Self Studies

Complex Numbers and Quadratic Equations Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f\left( z \right) =\dfrac { 1-{ z }^{ 3 } }{ 1-z } $$, where $$z=x+iy$$ with $$z\neq 1$$, then $$Re\overline { \left\{ f\left( z \right)  \right\}  } =0$$ reduces to
    Solution
    $$f\left( z \right) =\dfrac { 1-{ z }^{ 3 } }{ 1-z } =\dfrac { \left( 1-z \right) \left( 1+z+{ z }^{ 2 } \right)  }{ \left( 1-z \right)  } $$
             $$=1+z+{ z }^{ 2 }$$
    Put $$z=x+iy$$, we get
    $$f\left( z \right) =1+x+iy+{ \left( x+iy \right)  }^{ 2 }$$
        $$=1+x+iy+{ x }^{ 2 }+2xyi+{ i }^{ 2 }{ y }^{ 2 }$$
        $$=\left( 1+x+{ x }^{ 2 }-{ y }^{ 2 } \right) +i\left( y+2xy \right) $$
    $$\Rightarrow f\left( \overline { z }  \right) =\left( 1+x+{ x }^{ 2 }-{ y }^{ 2 } \right) -i\left( y+2xy \right) $$
    Now, $$Re\left\{ \overline { f\left( z \right)  }  \right\} =0$$
    $$\Rightarrow 1+x+{ x }^{ 2 }-{ y }^{ 2 }=0$$
    $$\Rightarrow { x }^{ 2 }-{ y }^{ 2 }+x+1=0$$
  • Question 2
    1 / -0
    Let Z and w be complex numbers. If $$Re(z)=|z-2|, Re(w) = |w-z|$$ and $$arg(z-w)=\dfrac{\pi}{3}$$, then the value of $$Im(z+w)$$, is
    Solution
    $$Re\left( z \right) =\left| z-2 \right| $$
    $$Re\left( w \right) =\left| w-z \right| $$
    $$arg\left( z-w \right) =\cfrac { \pi }{ 3 } $$
    Now,
    $$Re\left( z+w \right) =\left| \left| z-2 \right| +\left| w-z \right|  \right| $$
    $$=\left| w-2 \right| =2$$
    $$arg\left( z-w \right) =\cfrac { y }{ x } $$
    $$\tan { \cfrac { \pi  }{ 3 }  } =\cfrac { Im\left( z+w \right)  }{ Re\left( z+w \right)  } $$
    $$\Rightarrow Im\left( z+w \right) =\cfrac { 2 }{ \sqrt { 3 }  } $$
    Hence (B) is the correct answer
  • Question 3
    1 / -0
    If $$\left( \dfrac{1 + i}{1 - i} \right)^m = 1$$, then the least positive integral value of m is
    Solution
    Consider $$(\dfrac{1+i}{1-i})$$

    Rationalize the denominator we get,

    $$\Rightarrow (\dfrac{1+i}{1-i})=\dfrac{(1+i)(1+i)}{(1-i)(1+1)}=\dfrac{(1+i)^2}{(1-i)(1+i)}$$

    Here we see that denominator is in the form of $$(a+b)(a-b)=a^2-b^2$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{(1+i)^2}{1^2-i^2}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{(1+i)^2}{1-i^2}$$

    we know that $$(a+b)^2=a^2+2ab+b^2$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1^2+(2\times 1\times i)+i^2}{1-i^2}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1^2+2i+i^2}{1-i^2}$$

    We know that $$i^2=-1$$ , substituting this we get,

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1+2i+(-1)}{1-(-1)}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1+2i-1}{1+1}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=\dfrac{2i}{2}$$

    $$\Rightarrow \dfrac{1+i}{1-i}=i$$

    Given that $$\Rightarrow (\dfrac{1+i}{1-i})^m=1$$

    $$\Rightarrow (\dfrac{1+i}{1-i})^m=i^m$$

    So, $$i^m=1$$

    We know that $$i^2=-1$$

    Squaring on both sides we get,

    $$i^4=(-1)^2$$

    $$i^4=1$$

    Therefore the smallest value of $$m$$ for which $$ (\dfrac{1+i}{1-i})^m=1$$ is $$m=4$$
  • Question 4
    1 / -0
    If $$z=1+i$$, then the argument of $${ z }^{ 2 }{ e }^{ z-i }$$ is
    Solution
    Let $$w={ z }^{ 2 }{ e }^{ z-i }$$ 
    Put $$z=1+i$$
    $$\Rightarrow w={ \left( 1+i \right)  }^{ 2 }{ e }^{ 1+i-i }=\left( 1+2i+{ i }^{ 2 } \right) e$$
    $$=\left( 1+2i-1 \right) e=2ei$$
    Now, argument of $$w=arg\left( w \right) $$
    $$=\tan ^{ -1 }{ \left( \dfrac { 2e }{ 0 }  \right)  } =\tan ^{ -1 }{ \infty  } =\dfrac { \pi  }{ 2 } $$
  • Question 5
    1 / -0
    If $$p, q$$ are odd integers, then the roots of the equation $$2px^{2} + (2p + q) x + q = 0$$ are
    Solution
    Given equation is $$2px^{2} + (2p + q) x + q = 0$$ ........ $$(i)$$

    Now, $$D = (2p + q)^{2} - 8pq$$ 

                  $$=4p^{2}+4pq+q^{2}-8pq$$

                  $$=4p^{2}-4pq+q^{2}$$

                  $$= (2p - q)^{2}\rightarrow$$ always a perfect square.

    $$\therefore$$ Roots are given by 

    $$x=\dfrac{-(2p+q)\pm \sqrt{(2p+q)^{2}-8pq}}{4p}$$

       $$=\dfrac{-2p-q\pm (2p-q)}{4p}$$

    $$x=\dfrac{-2p-q+2p-q}{4p}=-\dfrac{q}{2p}$$ which is rational as $$p, q$$ are odd integers and $$2$$ is even

    Or $$x=\dfrac{-2p-q-2p+q}{4p}=-\dfrac{4p}{4p}=-1$$ which is also rational
    Thus, the roots of equation $$(i)$$ are rational.
  • Question 6
    1 / -0
    If $$iz^{3} + z^{2} - z + i = 0$$, then $$|z|$$ is equal to
    Solution
    Given : $$iz^{3} + z^{2} - z + i = 0$$
    Dividing both sides by $$i$$ and using $$\dfrac {1}{i} = -i$$.
    We have,
    $$z^{3} - iz^{2} + iz + 1 = 0$$
    $$\Rightarrow z^{2}(z - i) + i(z - i) = 0$$ ...... $$(\because i^{2} = -1)$$
    $$\Rightarrow (z - i)(z^{2} + i) = 0$$
    $$\therefore z = i$$ or $$z^{2} = -i$$
    $$\therefore |z| = |i| = 1$$
    and $$|z|^{2}=|z^{2}| = |-i| = 1$$
    $$\therefore |z| =1$$.
  • Question 7
    1 / -0
    The principal argument of the complex number $$z=\cfrac { 1+\sin { \cfrac { \pi  }{ 3 }  } +i\cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  } -i\cos { \cfrac { \pi  }{ 3 }  }  } $$ is?
    Solution
    $$arg(z)=arg(Numerator)-arg(Denominator)$$
    $$=\tan ^{ -1 }{ \left| \cfrac { \cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  }  }  \right|  } +\tan ^{ -1 }{ \left| \cfrac { \cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  }  }  \right|  } $$
    $$=2\tan ^{ -1 }{ \left| \cfrac { \cos { \cfrac { \pi  }{ 3 }  }  }{ 1+\sin { \cfrac { \pi  }{ 3 }  }  }  \right|  } $$
    $$=2\tan ^{ -1 }{ (2-\sqrt { 3 }  } )=2\times {15}^{o}=\cfrac { \pi  }{ 6 } $$
  • Question 8
    1 / -0
    The value of $$ \sum _{ k=0 }^{ n }{ (i^k + i^{k+1} ) } , $$ where $$ i^2 = -1 ,$$ is equal to :
    Solution
    The value of $$ \sum _{ k=0 }^{ n }{ (i^k + i^{k+1} ) } =  \sum _{ k=0 }^{ n }{ i^k ( {i +1} ) }  $$ is, 
    $$ = (i+1) \left[ \dfrac {1(1-i^{n+1})} {(1-i)} \right] \times \dfrac {1+i}{1+i} $$
    $$ = \dfrac {(1+i)^2 }{1+1} = \dfrac {(1-1+2i)(1-i^{n+1} )}{2} $$
    $$ = \dfrac {2i}{2} ( 1 - i^{n+1} ) $$
    $$= i - i^{n+2} $$
  • Question 9
    1 / -0
    If $$z_{1}$$ and $$z_{2}$$ be complex numbers such that $$z_{1} + i(\overline {z_{2}}) = 0$$ and $$arg (\overline {z_{1}}z_{2}) = \dfrac {\pi}{3}$$. Then, $$arg (\overline {z_{1}})$$ is equal to
    Solution
    Given, $$z_{1} + i \,\overline {(z_{2})} = 0$$
    $$\Rightarrow z_{1} = (-i) \overline {z_{2}}$$
    Taking argument on both sides, we get
    $$arg (z_{1}) = arg \left \{(-i) \cdot \overline {z_{2}}\right \}$$
    $$\Rightarrow  arg (z_{1}) = arg (-i) + arg (\overline {z_{2}})$$ (by property)
    $$\Rightarrow arg(z_{1}) - arg (\overline {z_{2}}) = \tan^{-1} \left (\dfrac {-1}{0}\right ) = -\dfrac {\pi}{2}$$
    $$\Rightarrow arg (z_{1}) + arg (z_{2}) = \dfrac {-\pi}{2} ..... (i)$$
    $$[\because arg (\overline {z}) = -arg (z)]$$
    and $$arg (\overline {z_{1}}z_{2}) = \dfrac {\pi}{3}$$
    $$\Rightarrow arg (\overline {z_{1}}) + arg (z_{2}) = \dfrac {\pi}{3}$$
    $$\Rightarrow -arg (z_{1}) + arg (z_{2}) = \dfrac {\pi}{3}... (ii)$$
    On adding Eqs. (i) and (ii), we get
    $$2 arg (z_{2}) = \dfrac {-\pi}{6}$$
    $$\Rightarrow arg (z_{2}) = \dfrac {-\pi}{12}$$
    Therefore, from Eq. (i),
    $$arg (z_{1}) = \dfrac {-\pi}{2} + \dfrac {\pi}{12} = \dfrac {-5\pi}{12}$$
    $$\Rightarrow -arg (z_{1}) = \dfrac {5\pi}{12}$$
    $$\Rightarrow arg (z_{1}) = \dfrac {5\pi}{12}$$.
  • Question 10
    1 / -0
    The inequality $$\left| z-4 \right| <\left| z-2 \right| $$ represents the region given by:
    Solution
    We know that, $$\left| z-{ z }_{ 1 } \right| >\left| z-{ z }_{ 2 } \right| $$ represents the region on right side of perpendicular bisector of $${z}^{1}$$ and $${z}^{2}$$.
    Thus, the given inequality $$\left| z-2 \right| >\left| z-4 \right| $$ represents the region on the right side of perpendicular bisector of $$2$$ and $$4$$.
    $$\Rightarrow Re(z)>3$$ and $$\text{Im}(z)\in R$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now