Self Studies

Complex Numbers and Quadratic Equations Test 24

Result Self Studies

Complex Numbers and Quadratic Equations Test 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$(1 - i\sqrt {3})^{2} (z) (4i) = (1 + i\sqrt {3})$$, then $$Amp\ z$$ is
    Solution
    $$(1 - i\sqrt {3})^{2} (z) (4i) = (1 + i\sqrt {3})$$
    $$\Rightarrow 04iz (1 + i\sqrt {3}) = \dfrac {1 + i\sqrt {3}}{2} \Rightarrow z = \dfrac {0 + i}{8} = \dfrac {i}{8}$$
    $$\therefore$$ Amp of $$z$$ or argument of $$z = \tan^{-1} \left (\dfrac {1/8}{0}\right )$$
    $$\therefore$$ Argument of $$z = \dfrac {\pi}{2}$$.
  • Question 2
    1 / -0
    If the equation $$x^2 - bx + 1 = 0$$ does not possess real roots, then
    Solution
    If equation $$x^2-bx+1=0$$ does not have real roots, then 

    $$\Delta <0\implies b^2-4<0$$

    $$(b+2)(b-2)<0$$

    $$\therefore -2<b<2$$



  • Question 3
    1 / -0
    If $$ z = \dfrac {-1}{2} + i \dfrac {\sqrt3}{2} $$, then $$ 8 + 10z + 7z^2 $$ is equal to :
    Solution
    Given, $$ z = - \dfrac {1} + i \dfrac {\sqrt3}{2} $$
    Therefore, $$z^2 = \dfrac {1}{4} - \dfrac {3}{4} - 2i \times \dfrac {1}{2} \dfrac {\sqrt3}{2} = - \dfrac {1}{2} - i \dfrac {\sqrt3}{2} $$
    $$ \Rightarrow  8 + 10z + 7z^2 = 8 + 10 \left(  - \dfrac {1}{2} + i \dfrac { \sqrt3}{2} \right) + 7 \left( - \dfrac {1}{2} + \dfrac { 3 \sqrt3}{2}i \right) $$
    $$ = 8 - 5 + i 5 \sqrt3 - \dfrac {7}{2} - i \dfrac {7 \sqrt3}{2}$$
    $$ = - \dfrac {1}{2} + \dfrac { 3 \sqrt3}{2} i$$
  • Question 4
    1 / -0
    If the complex numbers $$z_1, z_2$$ and $$z_3$$ denote the vertices of an isosceles triangle, right angled at $$z_1$$, then $$(z_1 - z_2)^2 + (z_1 - z_3)^2$$ is equal to
    Solution
    Since, the triangleis isosceles and right angled, we can say that 
    $$(z_3-z_1) = (z_2-z_1) (\cos 90^o + i \sin 90^o)$$
    $$\Rightarrow  (z_3-z_1) = i(z_2-z_1)$$
    Squaring bothe sides, we get
    $$(z_3-z_1)^2 = -(z_2-z_1)^2$$
    $$\Rightarrow  (z_3-z_1)^2 + (z_2-z_1)^2 = 0$$
  • Question 5
    1 / -0
    If $$z$$ is a complex number such that $$z + |z| = 8 + 12i$$, then the value of $$|z^{2}|$$ is
    Solution
    Let $$z = x + iy$$
    Then, we have $$z + |z| = 8 + 12i$$
    $$\Rightarrow(x + iy) + |x + iy| = 8 + 12l$$
    $$\Rightarrow (x + \sqrt {x^{2} + y^{2}}) + iy = 8 + 12i$$
    On comparing the real and imaginary part, we get
    $$y = 12$$
    and $$x + \sqrt {x^{2} + y^{2}} = 8$$
    $$\Rightarrow \sqrt {x^{2} + 144} = 8 - x$$
    On squaring both sides, we get
    $$x^{2} + 144 = 64 + x^{2} - 16x$$
    $$\Rightarrow 16x = -80$$
    $$\Rightarrow x = -5$$
    $$\therefore z = x + iy = -5 + i\cdot 12$$
    Then, $$|z| = \sqrt {25 + 144} = \sqrt {169} = 13$$
    $$\Rightarrow |z|^{2} = 169$$
    $$\Rightarrow |z^{2}| = 169 (\because |z^{n}| = |z|^{n})$$.
  • Question 6
    1 / -0
    Which of the given alternatives represent a point in Argand plane, equidistant from roots of the equation $$(z+1)^4= 16z^4$$?
    Solution
    Consider the given equation $$(z+1)^4=16z^4$$
    $$ \Rightarrow (z+1)^4=16z^4$$

    $$ \Rightarrow z+1=(2^4z^4)^{\frac{1}{4}}$$

    $$ \Rightarrow |z+1|=2|z|$$

    We know that $$z=x+iy$$

    Therefore $$|x+iy+1|=2|x+iy|$$

    $$ \Rightarrow \sqrt{(x+1)^2+y^2}=2\sqrt{x^2+y^2}$$

    $$ \Rightarrow (x+1)^2+y^2=4(x^2+y^2)$$

    $$ \Rightarrow x^2+2x+1+y^2=4x^2+4y^2$$

    $$ \Rightarrow 3x^2+3y^2-2x-1=0$$

    Divide throughout by 3 we get,
    $$ \Rightarrow x^2+y^2-\dfrac{2}{3}x-\dfrac{1}{3}=0$$, which represents a circle.

    We know that for the circle equation of the form $$x^2+y^2+2gx+2hy+c=0$$ the center of the circle is given by $$(-g,-h)$$

    We have $$3x^2+3y^2-2x-1=0$$ where $$g=-\dfrac{1}{3}, h=0$$.

    Hence the center is $$(\dfrac{1}{3},0)$$ which is equidistant from the root of the equation.
  • Question 7
    1 / -0
    The number of values k for which  $$[x^2- (k -2)x + k^2$$][$$x^2+kx+(2k-1)]$$  is a perfect square is
    Solution
    $$[x^2-(k-2)x+k^2][x^2+kx+(2k-1)]$$

    For the expression to be a perfect square ,ther are two possible way
    $$(i)$$ When both the quadratic expression are perfect square for a particular value.For this to happen,
    $$k-2=2k\rightarrow k=-2$$
    Now,for $$k=-2$$in the second expression ,we get,

    $$x^2-2x-5$$,which is not a perfect square.

    $$(ii)$$The other way is when both the quadratic equations are same.
    $$-(k-2)=k\rightarrow k=1+k^2=2k-1\rightarrow k=1$$
    At $$k=1$$,the expression is a perfect square.

    Thus, minimum values of $$ k\quad is$$ 1
  • Question 8
    1 / -0
    Let$$ z$$ = $$\cos\theta + i \sin\theta$$. Then the value of $$\sum\limits_{m=1}^15Im( z^{2m-1})$$ at $$\theta = 2^0$$ is 
    Solution
    using the sum of series of sine
    $$\sum_{m=1}^{n}sin(a+k.d)=\dfrac{sin\dfrac{n\times d}{2}}{sin\dfrac{d}{2}}\times sin(\dfrac{2a+(n-1).d}{2})$$
    Given,
    $$\sum_{m=1}^{15}Im(z^{2m-1})\rightarrow$$

    $$sin\theta+sin3\theta+sin5\theta+.......sin29\theta=$$

    $$\rightarrow\dfrac{sin\dfrac{15\times 2\theta}{2}}{sin\dfrac{2\theta}{2}}\times sin(\dfrac{2\theta+(14\times2\theta)}{2})$$

    $$\rightarrow\dfrac{sin^215\theta}{sin\theta}$$

    put $$\theta = 2^{\circ}$$

    $$\rightarrow\dfrac{sin^230^{\circ}}{sin2^{\circ}}$$

    $$\rightarrow\dfrac{1}{4.sin2^{\circ}}$$


  • Question 9
    1 / -0
    If $$z_1, z_2$$ are two complex numbers such that $$arg(z_1+z_2)=0$$ and $$Im(z_1z_2)=0$$, then.
    Solution
    Let $$ z_1=a+ib$$
    and $$z_2=c+id$$
    Now $$z_1+z_2=(a+c)+i(b+d)$$
    Given $$arg(z_1+z_2)=0$$
    $$\Rightarrow tan^{-1}[\dfrac{b+d}{a+c}]=0$$
    $$\Rightarrow b+d=0$$.........$$(1)$$
    Now,
     $$z_1z_2=(ac-bd)+i(ad+bc)$$
    Given $$Im(z_1z_2)=0$$
    $$\Rightarrow ad+bc=0$$.........$$(2)$$
    Putting $$b=-d$$ from $$(1)$$ in $$(2)$$ we get $$a=c$$
    Hence $$z_1=a+ib=c-id= $$conjugate of $$z_2=z_2^{\rightarrow}$$
    Hence option C is correct.


  • Question 10
    1 / -0
    The principal value of $$arg(z)$$ lies in the interval:
    Solution

    For a complex number $$z=re^{\phi i}$$ the principal value of the square root is: $$pv\: \sqrt{z}=\sqrt{r}e^{i\phi/2}$$ with argument $$-\pi < 0 \leq \pi$$

    Thus the principal value of $$arg(z)$$ lies in the interval: $$(-\pi,\pi]$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now