Self Studies

Complex Numbers and Quadratic Equations Test 25

Result Self Studies

Complex Numbers and Quadratic Equations Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$z + \sqrt {2}|z + 1| + i = 0$$ and $$z = x + iy$$, then
    Solution
    On putting $$z=x+iy$$, We get

    =>  $$x+iy+\sqrt{2(x+1)^2+2y^2} +i=0$$

    =>  $$x+\sqrt{2(x+1)^2+2y^2} +i(y+1)=0$$

    =>  On comparing real part and imaginary part, We get

    =>  $$x+\sqrt{2(x+1)^2+2y^2} )=0$$   and   $$y+1=0$$

     So, $$y=-1$$

    and , $$\sqrt{2(x+1)^2+2y^2} )=-x$$

    => $${2(x+1)^2+2} =x^2$$

    => $$x=-2$$


  • Question 2
    1 / -0
    If $$(a, 0)$$ is a point on a diameter segment of the circle $$x^2+y^2=4$$, then $$x^2-4x-a^2=0$$ has.
    Solution
    Given $$x^2-4x-a^2=0$$
    $$D=16-4.1.(-a^2)$$
    $$D=16+4a^2$$
    $$\alpha+\beta=4$$
    $$\alpha \cdot \beta=-a^2$$
    That mean one root is positive and other is negative
    $$-2\leq a\leq2$$
    So, answer is $$A$$
  • Question 3
    1 / -0
    Let $$P(e^{i\theta_1})$$,  $$Q(e^{i\theta_2})$$  and  $$R(e^{i\theta_3})$$ be the vertices of a triangle PQR in the Argand Plane. The orthocenter of the triangle PQR is 
    Solution
    $$P,Q,R$$ lie on the unit circle and hence origin is the cirumcenter , The centrid is easily found as $$\dfrac{(p+q+r)}{3}$$,Using euler line theorem that centroid divides the line joining the line joining orthocenter and circumcenter in the ratio of $$2:1$$
    Let orthocenter be $$x,y$$

    $$Using \quad section \quad formula;$$
     
    $$Re(\dfrac{(p+q+r)}{3})=\dfrac{(1.x+2.0)}{3}$$
    $$Im(\dfrac{(p+q+r)}{3})=\dfrac{(1.y+2.0)}{3}$$

    we get orthocenter as 
    $$p+q+r\rightarrow$$   $$e^{\theta_1}+$$$$e^{\theta_2}+$$$$e^{\theta_3}$$
  • Question 4
    1 / -0
    Let $$z,\omega$$ be complex numbers such that $$\vec{z}+i\vec{\omega}=0$$ and $$Arg(z\omega)=\pi$$ then $$Arg(z)=$$.
    Solution
    Since $$z+iw=0$$
    $$\Rightarrow z=-iw$$
    $$\Rightarrow w=-iz$$
    Also $$arg(zw)=\pi$$
    $$\Rightarrow arg(-iz^2)=\pi$$
    $$\Rightarrow arg(-i)+2arg(z)=\pi$$
    $$\Rightarrow \dfrac{-\pi}{2}+2arg(z)=\pi$$ ....... $$\left[\because arg(-i)=\dfrac{-\pi}{2}\right]$$
    $$\Rightarrow 2arg(z)=\dfrac{3\pi}{2}$$
    $$\Rightarrow arg(z)=\dfrac{3\pi}{4}$$
    Hence, the answer is $$\dfrac{3\pi}{4}$$.
  • Question 5
    1 / -0
    Study the statements carefully.
    Statement I: Both the roots of the equation $$x^2-x+1=0$$ are real.
    Statement II: The roots of the equation $$ax^2+bx+c=0$$ are real if and only if $$b^2-4ac \geq 0$$.
    Which of the following options hold?
    Solution
    As we know condition for the roots to be real is $$ b^2-4ac  \geq 0 $$ 
    so as doing for the statement 1 we are getting $$ (-1)^2-4*1*1=(-3) $$ which is less than $$ 0$$ so the roots will be unequal so statement 1 is false and statement 2 gives the right condition so its true.
    Hence option d is correct.
  • Question 6
    1 / -0
    If '$$\omega$$' is a complex cube root of unity,then $$\omega ^{ \begin{pmatrix} \frac { 1 }{ 3 }  & +\frac { 2 }{ 9 } +\frac { 4 }{ 27 } ...\infty  \end{pmatrix} }+\omega^{ \begin{pmatrix} \frac { 1 }{ 2 }  & +\frac { 3 }{ 8 } +\frac { 9 }{ 32 } ...\infty  \end{pmatrix} }=$$
    Solution
    $$\dfrac{1}{3}+\dfrac{2}{9}+\dfrac{4}{27}+......+\infty$$  (infinte G.P.)

    $$S_\omega = \dfrac{a}{1-r} =1$$

    $$\dfrac{1}{2}+\dfrac{3}{8}+\dfrac{9}{32}+......+\infty$$  (infinte G.P.)

    $$S_\omega = \dfrac{a}{1-r} =2$$

    $$\therefore\, \omega^1+\omega^2=-1$$
  • Question 7
    1 / -0
    If $${z}_{1}=-3+5i;{z}_{2}=-5-3i$$ and $$z$$ is a complex number lying on the line segment joining $${z}_{1}$$ and $${z}_{2}$$, then $$arg(z)$$ can be:
  • Question 8
    1 / -0
    If $$\dfrac {lz_{2}}{mz_{1}}$$ is purely imaginary number, then $$\left |\dfrac {\lambda z_{1} + \mu z_{2}}{\lambda z_{1} - \mu z_{2}}\right |$$ is equal to
    Solution
    $$\cfrac { { lz }_{ 2 } }{ m{ z }_{ 1 } } =ki\\ \cfrac { { z }_{ 2 } }{ { z }_{ 1 } } =\cfrac { mki }{ l } \\ \implies |\cfrac { { \lambda z }_{ 1 }+\mu { z }_{ 2 } }{ { \lambda z }_{ 1 }-\mu { z }_{ 2 } } |\\ \implies |\cfrac { \lambda +\mu { z }_{ 2 }/{ z }_{ 1 } }{ \lambda -\mu { z }_{ 2 }/{ z }_{ 1 } } |\\ \implies |\cfrac { \lambda +\mu \cfrac { mki }{ l }  }{ \lambda -\mu \cfrac { mki }{ l }  } |\\ \implies|\cfrac { \lambda l+\mu mki }{ \lambda l-\mu mki } |$$
    $$\implies|\cfrac{re^{i\theta}}{re^{-i\theta}}|$$
    $$\implies |e^{2i\theta}|$$
    $$\implies 1$$
  • Question 9
    1 / -0
    The complex numbers $$z=x+iy$$ which satisfy the equation
    $$\left| \cfrac { z-5i }{ z+5i }  \right| =1$$ lie on:
    Solution
    $$|z-5i|$$$$=|z+5i|$$
    $$|x+iy-5i|$$$$=|x+iy+5i|$$
    $$\sqrt{x^2+(y-5)^2}$$$$=\sqrt{x^2+(y+5)^2}$$
    $$\implies x^2+y^2+25-10y$$$$=x^2+y^2+25+10y$$
    $$\implies y=0$$
    Hence $$x$$ axis.


  • Question 10
    1 / -0
    Find a complex number z satisfying the equation $$z+\sqrt{2}|z+1|+i=0$$
    Solution
    Let $$z=x+iy$$. Then,

    $$z+\sqrt{2}|z+1|+i=0$$

    $$x+iy+\sqrt{2}|(x+1)+iy|+i=0$$

    $$x+\sqrt{2}\sqrt{(x+1)^2+y^2}+(y+1)i=0$$

    $$x+\sqrt{2(x+1)^2+2y^2}+(y+1)i=0$$

    $$x+\sqrt{2(x+1)^2+2}=0$$ and $$y=-1$$

    $$\sqrt{2(x+1)^2+2}=-x$$ and $$y=-1$$

    $$2(x+1)^2+2=x^2$$ and $$y=-1$$

    $$x^2+4x+4=0$$ and $$y=-1$$

    $$(x+2)^2=0$$ and $$y=-1$$

    $$x=-2$$ and $$y=-1$$

    Hence, $$z=x+iy=-2-i$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now