Self Studies

Complex Numbers and Quadratic Equations Test 26

Result Self Studies

Complex Numbers and Quadratic Equations Test 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $${ a }^{ 2 }+{ b }^{ 2 }=1$$, then $$\dfrac {\left( 1+b+ia \right) }{\left( 1+b-ia \right)} $$ is
    Solution
    $$a^2+b^2=1$$

    $$\implies 1-a^2=b^2$$

    $$\dfrac{1+b+ia}{1+b-ia}$$

    $$=\dfrac{1+b+ia}{1+b-ia}\times \dfrac{1+b+ia}{1+b+ia}$$

    $$=\dfrac{(1+b)^2-a^2+2ia(1+b)}{(1+b)^2+a^2}$$

    $$=\dfrac{b^2+2b+1-a^2+2ia(1+b)}{1+2b+b^2+a^2}$$

    $$=\dfrac{2b^2+2b+2ia(1+b)}{2+2b}$$

    $$=\dfrac{(2b+2ia)(1+b)}{2(1+b)}$$

    $$=b+ia$$

    Answer-(C)
  • Question 2
    1 / -0
    The real part of $$(1-\cos\theta +2i \sin\theta)^{-1}$$ is?
    Solution
    $$(1-\cos\theta +2i \sin\theta)^{-1}$$
    $$=\dfrac{1}{(1-\cos\theta +2i \sin\theta)}$$
    $$=\dfrac{1}{(2\sin^2\dfrac{\theta}{2} +4i \sin\dfrac{\theta}{2}.\cos \dfrac{\theta}{2})}$$
    $$=\dfrac{1}{2\sin\dfrac{\theta}{2}}\dfrac{1}{(\sin\dfrac{\theta}{2} +2i \cos\dfrac{\theta}{2})}$$
    $$=\dfrac{1}{2\sin\dfrac{\theta}{2}}\dfrac{\left(\sin\dfrac{\theta}{2}-2i\cos \dfrac{\theta}{2}\right)}{(\sin^2\dfrac{\theta}{2} +4 \cos^2\dfrac{\theta}{2})}$$
    $$=\dfrac{1}{\sin\dfrac{\theta}{2}}\dfrac{\left(\sin\dfrac{\theta}{2}-2i\cos \dfrac{\theta}{2}\right)}{(2\sin^2\dfrac{\theta}{2} +8 \cos^2\dfrac{\theta}{2})}$$
    $$=\dfrac{\left(1-2i\cot \dfrac{\theta}{2}\right)}{\{1-\cos \theta+4(1+\cos \theta)\}}$$
    $$=\dfrac{\left(1-2i\cot \dfrac{\theta}{2}\right)}{5+3\cos \theta}$$
    So the real part is $$\dfrac{1}{5+3\cos \theta}$$..
  • Question 3
    1 / -0
    If in applying the quardratic formula to a quadratic equation
    $$f(x) = ax^2 + bx + c = 0$$, it happens that $$c = b^2/4a$$, then the graph of $$y = f(x)$$ will certainly:
    Solution
    The condition $$c = b^2/4a$$ implies equal real coefficients, i.e., the curve touches the $$x$$-axis at exactly one point and, therefore, the graph is tangent to the $$x$$-axis.
  • Question 4
    1 / -0
    If $$\mid{z_1}\mid=2$$, $$\mid{z_2}\mid=3$$, $$\mid{z_3}\mid=4$$ and $$\mid{z_1+z_2+z_3}\mid=2$$, then the value of $$\mid{4z_2z_3+9z_3z_1+16z_1z_2}\mid$$.
    Solution
    $$z_1\bar{z_1}=|z_1|^2=1$$$$,z_2\bar{z_2}=|z_2|^2=9$$$$,z_3\bar{z_3}=|z_3|^2=6$$
    $$|4z_2z_3+9z_3z_1+16z_1z_2|$$
    $$\implies |\bar{z_1}z_1z_2z_3$$$$+\bar{z_2}z_1z_2z_3$$$$+\bar{z_3}z_1z_2z_3|$$
    $$\implies |z_1||z_2||z_3||\bar{z_1}+\bar{z_2}+\bar{z_3}|$$
    $$\implies 24\times$$ $$|\bar{z_1}+\bar{z_2}+\bar{z_3}|$$
    $$\implies 48$$
  • Question 5
    1 / -0
    Evaluate:
    $${ \left( \dfrac { cos\dfrac { \pi  }{ 8 } -isin\dfrac { \pi  }{ 8 }  }{ cos\dfrac { \pi  }{ 8 } +isin\dfrac { \pi  }{ 8 }  }  \right)  }^{ 4 }$$
    Solution
    We know that $$e^{i\theta}=cos\theta+isin\theta$$ and $$e^{-1\theta}=cos\theta-isin\theta$$

    $${ \left( \dfrac { cos\dfrac { \pi  }{ 8 } -isin\dfrac { \pi  }{ 8 }  }{ cos\dfrac { \pi  }{ 8 } +isin\dfrac { \pi  }{ 8 }  }  \right)  }^{ 4 }$$

    $$=\left(\dfrac{e^{-i(\pi/8)}}{e^{i(\pi/8)}}\right)^4=(e^{-i(\pi/4)})^4=e^{-i\pi}=cos\pi-isin\pi=-1$$
  • Question 6
    1 / -0
    Let $$z_1$$ and $$z_2$$ are two complex numbers such that $$(1-i)z_1=2z_2$$ and $$arg(z_1z_2)=\dfrac{\pi}{2}$$ then $$arg(z_2)$$ is equals to:
    Solution
    $$(1-i)z_1=2z_2$$
    $$\cfrac{z_2}{z_1}=\cfrac{1}{2}-\cfrac{i}{2}$$
    Let $$z_1=r_1e^{i\theta_1}\ and\ z_=r_1r^{\theta_2}$$
    $$arg(\cfrac{z_2}{z_1})=\tan^{-1}\cfrac{-1/2}{1/2}=-\pi/4$$
    $$\theta_2-\theta_1=-\pi/4$$  and $$arg(z_1z_2)=\pi/2$$ (given)
    $$\implies \theta_2-\theta_1=-\pi/4$$  and $$\theta_2
    +\theta_1=\pi/2$$

    $$\implies 2\theta_2=\pi/4,\theta_2=\pi/8$$
    $$\implies arg(z_2)=\pi/8$$
  • Question 7
    1 / -0

    Let $$z$$ be a complex number such that $$\left| z+\dfrac { 1 }{ z }  \right| =2$$. 

    If $$\left| z \right| ={ r }_{ 1 }$$ and $$\left| \dfrac { 1 }{ z }  \right| =$$ $${r}_{2}$$ for $$\arg z=\dfrac { \pi  }{ 4 }$$ then 

    $$\left| { r }_{ 1 }-{ r }_{ 2 } \right| =$$

    Solution
    $$ \left| z+\dfrac { 1 }{ z }  \right| ^{ 2 }={ r }^{ 2 }+\dfrac { 1 }{ { r }^{ 2 } } +2r.\dfrac { 1 }{ r } \cos { \left( \theta +\theta  \right)  } =4$$
    or $${ r }^{ 2 }+\dfrac { 1 }{ { r }^{ 2 } } =4-2\cos { 2\theta  }$$
    $$\therefore\quad \left( r-\dfrac { 1 }{ r }  \right) ^{ 2 }=2\left( 1-\cos { 2\theta  }  \right) =4\sin { ^{ 2 }\theta  }$$
    $$\left| { r }_{ 1 }-{ r }_{ 2 } \right| =\left| r-\dfrac { 1 }{ r }  \right| =2\sin { \theta  } =2\sin { \dfrac { \pi  }{ 4 }  } =\sqrt { 2 }$$
  • Question 8
    1 / -0
    If $${z_1}$$ and $${z_2}$$ are two non-zero complex number such that $$\left| {{{{z_1}} \over {{z_2}}}} \right|$$ = 2 and $$\arg \left( {{z_1}{z_2}} \right) = {{3\pi } \over 2}$$ , then $${{\overline {{z_1}} } \over {{z_2}}}$$ is equal to 
    Solution
    $$Let\quad { z }_{ 1 }=2r{ e }^{ i{ \theta  }_{ 1 } },{ z }_{ 2 }=r{ e }^{ i{ \theta  }_{ 2 } }\\ arg\left( { z }_{ 1 }{ z }_{ 2 } \right) ={ \theta  }_{ 1 }+{ \theta  }_{ 2 }=\cfrac { 3\pi  }{ 2 } \\ \bar { { z }_{ 1 } } =2r{ e }^{ -i{ \theta  }_{ 1 } }\\ \cfrac { \bar { { z }_{ 1 } }  }{ { z }_{ 2 } } =\cfrac { 2r{ e }^{ -i{ \theta  }_{ 1 } } }{ r{ e }^{ i{ \theta  }_{ 2 } } } =2r{ e }^{ -i({ \theta  }_{ 1 }+{ \theta  }_{ 2 }) }=2r{ e }^{ -i\cfrac { 3\pi  }{ 2 }  }=2i$$
  • Question 9
    1 / -0
    When will the quadratic equation $$ax^2+bx+c=0$$ have Real Roots?
    Solution
    We learnt that the quadratic equation $$ax^2+bx+c=0$$ will have Real Roots when $$b^2-4ac0$$ Option $$a$$ is correct.
  • Question 10
    1 / -0

    If the value of '$$b^2-4ac$$'is equal to zero, the quadratic equation $$ax^2+bx+c=0$$ will have


    Solution
    $$ax^{2}+bx+c=0$$
    For roots, $$D \equiv b^{2}-4ac$$
    and given that $$b^{2}-4ac=0$$
    $$\Rightarrow D=0$$
    SO, equation will have only one root as,
    $$x=\cfrac{-b\pm\sqrt{b^{2}-4ac}}{2(a)}$$
    $$x=\cfrac{-b\pm 0}{2a}$$
    $$x=\cfrac{-b}{2a}$$ Only one real root.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now