Self Studies

Complex Numbers and Quadratic Equations Test 27

Result Self Studies

Complex Numbers and Quadratic Equations Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If z satisfies $$\left| {z - 1} \right| < \left| {z + 3} \right|$$ then $$w = 2z + 3 - i$$ , ( where $$w = 2z + 3 - i$$ ) satisfies:
    Solution

  • Question 2
    1 / -0
    Real part of  $$\dfrac{(1 + i)^2}{3 - i} =$$
    Solution
    Given  $$\dfrac{(1 + i)^2}{3 - i}$$

    $$=\dfrac{2i}{3 - i}$$          [Since $$(i+1)^2=2i$$]

    $$=\dfrac{2i(3+i)}{3^2 - i^2}$$      [After rationalizing the denominator]

    $$=\dfrac{2i(3+i)}{10}$$

    $$=\dfrac{(3i-1)}{5}$$.

    Now real part of the given complex number is $$-\dfrac{1}{5}$$.
  • Question 3
    1 / -0
    If $$\dfrac{2z_1}{3z_2}$$ is a purely imaginary number,then $$\left|\dfrac{z_1-z_2}{z_1+z_2}\right|=$$
    Solution
    $$\dfrac{2z_1}{3z_2}=k'i$$
    $$\dfrac{z_1}{z_2}=\dfrac{3k'i}{2}$$
    $$\dfrac{z_1}{z_2}=ki$$ where $$\dfrac{3k'}{2}=k$$
    $$z_1=kiz_2$$
    Thus $$\left|\dfrac{z_1-z_2}{z_1+z_2}\right|=\left|\dfrac{kiz_2-z_2}{kiz_2+z_2}\right|$$

    $$=\left|\dfrac{z_2(ki-1)}{z_2(ki+1)}\right|$$

    $$=\dfrac{|ki-1|}{|ki+1|}$$

    $$=\dfrac{\sqrt{k^2+1^2}}{\sqrt{k^2+1^2}}=1$$
  • Question 4
    1 / -0
    Find the real number $$x$$ if $$(x-2i)(1+i)$$ is purely imaginary.
    Solution
    $$(x-2i)(1+i)$$
    $$ = x+ix -2i-2i^2$$
    $$= (x+2) -i(x-2)$$ is purely imaginary if (x+2)=0
    $$\therefore x=-2$$
  • Question 5
    1 / -0
    If the equation $${ x }^{ 2 }+nx+n=0,n\epsilon I$$, has integral roots then $${ n }^{ 2 }-4n$$ can assume

    Solution
    $${ x }^{ 2 }+nx+n=0,n\epsilon 1$$ Discriminant $$={ n }^{ 2 }-4n$$ For integral roots, $${ n }^{ 2 }-4n$$ must be a perfect square.This happens when $${ n }^{ 2 }-4n={ p }^{ 2 }$$ for some $$p\epsilon I$$ here if $$p=0$$ then $$(n-4)n=0\Rightarrow n=4$$ or $$n=0$$ ($$2$$ integral values)
    $${ n }^{ 2 }-4n-p^{ 2 }=0$$ to have integral solution$$\Rightarrow $$Discriminant $$={ (-4) }^{ 2 }+4{ p }^{ 2 }$$ must be a perfect square$$=4({ p }^{ 2 }+1)$$ must be a perfect square, happens only when $$p=0$$
  • Question 6
    1 / -0
    If, for quadratic equation $$ax^2+bx +c=0, b^2-4ac \nleq 0$$ and a, b, c are all positive, then 
    Solution
    $$ax^{2}+bx+c=0$$
    and $$ b^{2}-4ac\nleq 0$$
    $$\Rightarrow b^{2}-4ac>0$$
    Roots of the Equation, $$x=\cfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$$
    as $$a, b, c$$ are all positive and we know $$\sqrt{b^{2}-4ac}$$ is positive
    $$\Rightarrow $$
     one root is negative. and another can be positive or negative.
  • Question 7
    1 / -0
    The value of $$\dfrac{1}{i} + \dfrac{1}{{{i^2}}} + \dfrac{1}{{{i^3}}} + ... + \dfrac{1}{{i^{102}}}$$ is equal to 
    Solution
    Let $$t=\cfrac { 1 }{ i } +\cfrac { 1 }{ { i }^{ 2 } } +.....+\cfrac { 1 }{ { i }^{ 102 } } $$
    $${ i }^{ 102 }t={ i }^{ 101 }+{ i }^{ 100 }+....+{ i }^{ 0 }$$
    Using sum of GP, $$a={ i }^{ 0 }=1$$
    $$r=i$$
    $$n={ 102  }$$
    $${ i }^{ 102 }t=\cfrac { 1\left( { i }^{ 102 }-1 \right)  }{ i-1 } =\cfrac { { i }^{ 2 }-1 }{ i-1 } =\cfrac { -2\left( i+1 \right)  }{ \left( i-1 \right) \left( i+1 \right)  } $$
    $${ i }^{ 102 }t=i+1\Rightarrow { i }^{ 2 }t=i+1$$
    $$t=-i-1$$
  • Question 8
    1 / -0
    If $$i^2= -1$$, then $$1+ i^2+ i^4 +i^6+i^8 +.............to ( 2n +1)$$ terms is equal to
    Solution
    $$ 1+ i^2 + i^4 + ......(2n+1)terms$$
    First term $$ a = i^2$$
    Common ratio $$ r = i^2$$
    $$ 1  + \cfrac{a(r^n-1)}{r-1}$$
    $$ = 1  - \cfrac{i^2(i^{2(2n)} - 1)}{i-1}$$
    $$ = 1 - \cfrac{i^2(i^4-1)}{i-1}$$  Since $$ i^4 = 1$$
    $$ =1$$ 
  • Question 9
    1 / -0
    $$i \, \log \left(\dfrac{x - i}{x + i}\right)$$ is equal to
    Solution
    $$i\log \left ( \cfrac{x-i}{x+i} \right )$$

    $$=i\log \left ( \cfrac{x-i}{x+i}\times  \cfrac{x-i}{x-i}\right )$$

    $$=i\log \left ( \cfrac{(x-i)^{2}}{x^{2}-i^{2}} \right )$$

    $$=i\log \left ( \cfrac{(x-i)^{2}}{x^{2}+1} \right )$$

    $$=i\log (x-i)^{2}-i\log \left ( x^{2}+1 \right )$$

    $$=2i\log (x-i)-i\log \left ( x^{2}+1 \right )$$
  • Question 10
    1 / -0
    The probability of choosing randomly a number c from the set $$\{1, 2, 3, ..........9\} $$ such that the quadratic equation $$x^2+ 4x +c=0$$ has real roots is:
    Solution
    $$x^2+4x+c=0$$
    For roots to be real
    $$0\ge 0$$
    $$16-4c\ge c$$
    $$4\ge c$$
    $$\therefore \{1,2,3,4\}$$
    $$\therefore$$ Probability $$=\cfrac{4}{9}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now