Self Studies

Complex Numbers and Quadratic Equations Test 28

Result Self Studies

Complex Numbers and Quadratic Equations Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a+ ib= \sum_{k=1}^{101} i^k $$, then $$(a, b)$$ equals 
    Solution
    Given:- 
    $$a + ib = \Sigma^{101}_{k = 1}{{i}^{k}} \longrightarrow \left( 1 \right)$$

    Solution:-

    $$\Sigma^{101}_{k = 1}{{i}^{k}} = i + {i}^{2} + {i}^{3} + ............... + {i}^{101}$$

    As te above series is in the form of G.P. with common ration $$(r)=i$$, first term $$\left( a \right) = i$$ and no. of terms $$\left( n \right) = 101$$

    $$\therefore \; {S}_{101} = \cfrac{ i \left( 1 - {i}^{101} \right)}{\left( 1 - i \right)} \; \left\{ \because {S}_{n} = \cfrac{a \left( 1 - {r}^{n} \right)}{\left( 1 - r \right)}\; \text{ for } r < 1 \right\}$$

    $$\Rightarrow \; {S}_{n} = \cfrac{i \left( 1 - {i}^{4 \times 25}.i \right)}{\left( 1 - i \right)}$$

    $$\Rightarrow \; {S}_{n} = \cfrac{ i \left( 1 - i \right)}{\left( 1 - i \right)} \; \left\{ \because {i}^{4n} = 1 \right\}$$

    $$\Rightarrow \; {S}_{n} = i$$

    $$\therefore \; \Sigma^{101}_{k = 1}{{i}^{k}} = i \longrightarrow \left( 2 \right)$$

    Now, from $${eq}^{n} \left( 1 \right) \& \left( 2 \right)$$, we have,

    $$a + ib = i$$

    $$\Rightarrow \; a + ib = 0 + i.1$$

    On comparing real and imaginary parts, we have

    $$a = 0 \; \& \; b = 1$$

    Hence, $$\left( a, b \right) = \left( 0, 1 \right)$$.
  • Question 2
    1 / -0
    If $$z = -3- i,$$ find $$|z|$$.
    Solution
    $$Re(z)=-3\\Im(z)=-1\\ \bar{z}=-3+i\\|z|=3^2+1^2=10$$

  • Question 3
    1 / -0

    A particle starts from a point $$z_0= I + i$$, where $$i
    =\sqrt{-1}$$ It moves horizontally away from origin by $$2$$ units and then
    vertically away from origin by $$3$$ units to reach a point$$ z_1$$. From $$z_1$$
    particle moves $$\sqrt{5}$$ units in the direction of $$2\hat i + \hat j$$ and
    then it moves through an angle of $$\cos e{c^{ - 1}}\sqrt 2 $$ in anticlockwise
    direction of a circle with centre at origin to reach a point $$z_2$$ . The arg $$z_2$$ is given by

    Solution

  • Question 4
    1 / -0
    Find the nature of the roots for the equation $$n^{2}+2\sqrt{2} n+1=0$$
    Solution
    Solution :- Given equation is 
    $$ n^{2}+2\sqrt{2n}+1 = 0 $$
    By quadratic root formula
    $$ \dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a} $$
    here $$ a = 1, b = 2\sqrt{2}, c = 1 $$
    $$ x = \dfrac{-2\sqrt{2}\pm \sqrt{(2\sqrt{2})^{2}4.1.1}}{2.1} $$
    $$ \Rightarrow  x = \dfrac{-2\sqrt{2}\pm \sqrt{8-4}}{2} = \dfrac{-2\sqrt{2}\pm \sqrt{4}}{2} $$
    $$ \Rightarrow x = \dfrac{-2\sqrt{2}\pm 2}{2} = -\sqrt{2}\pm 1 $$
    So roots are $$ (-\sqrt{2}+1), (-\sqrt{2}-1) $$
    $$ \therefore $$ So roots are irrational and district
    So correct answer is B.

  • Question 5
    1 / -0
    For the equation $$|x|^2+|x|-6=0$$, the roots are 
    Solution
    $$\Rightarrow$$  The given equation is $$|x|^2+|x|-6=0$$            ---- ( 1 )
    $$\Rightarrow$$  When $$x\ge 0$$, then $$|x|=x$$, so equation ( 1 ) becomes,
    $$x^2+x-6=0$$
    $$\Rightarrow$$  $$x^2+3x-2x-6=0$$
    $$\Rightarrow$$  $$x(x+3)-2(x+3)=0$$
    $$\Rightarrow$$  $$(x+3)(x-2)=0$$
    $$\Rightarrow$$  $$x=-3,2$$
    When $$x<0$$, then $$|x|=-x$$, so equation ( 1 ) becomes,
    $$x^2-x-6=0$$
    $$\Rightarrow$$  $$x^2-3x+2x-6=0$$
    $$\Rightarrow$$  $$x(x-3)+2(x-3)=0$$
    $$\Rightarrow$$  $$(x-3)(x+2)=0$$
    $$\Rightarrow$$  $$x=3,-2$$
    $$\Rightarrow$$  Sum of the roots $$=-3+2+3-2=0$$
    $$\therefore$$  Here, roots are real and equal.
  • Question 6
    1 / -0
    The real part of $$(1 - \cos\theta + 2i \sin\theta)^{-1}$$ is:
    Solution
    $$\Rightarrow \cfrac { 1 }{ \left( 1-\cos { \theta  }  \right) +2i\sin { \theta  }  } =\cfrac { \left( 1-\cos { \theta  }  \right) -2i\sin { \theta  }  }{ { \left( 1-\cos { \theta  }  \right)  }^{ 2 }-4{ i }^{ 2 }\sin ^{ 2 }{ \theta  }  } $$
    $$=\cfrac { \left( 1-\cos { \theta  }  \right) -2i\sin { \theta  }  }{ { \left( 1-\cos { \theta  }  \right)  }^{ 2 }+4{ i }^{ 2 }\sin ^{ 2 }{ \theta  }  }$$
  • Question 7
    1 / -0
    $$\dfrac{{{{\left( {1 + i} \right)}^3}}}{{2 + i}}$$  is equal to
    Solution
    $$\Rightarrow \cfrac { { \left( 1+i \right)  }^{ 3 } }{ 2+i } =\cfrac { { \left( 1+i \right)  }^{ 2 }\left( 1+i \right)  }{ 2+i } =\cfrac { \left( 1+{ i }^{ 2 }+2i \right) \left( 1+i \right)  }{ \left( 2+i \right)  } =\cfrac { 2i\left( 1+i \right)  }{ 2+i } $$
    $$\Rightarrow \cfrac { 2\left( i-1 \right) \left( 2-i \right)  }{ \left( 2+i \right) \left( 2-i \right)  } =\cfrac { 2\left( 2i-{ i }^{ 2 }-2+i \right)  }{ 4-{ i }^{ 2 } } =\cfrac { -2 }{ 5 } +\cfrac { 6 }{ 5 } i$$
  • Question 8
    1 / -0
    The modulus of the complex number $$z=\dfrac{1-i}{3-4i}$$ is
    Solution
    Now,
    $$z=\dfrac{1-i}{3-4i}$$
    or, $$z=\dfrac{(1-i)(3+4i)}{3^2+4^2}$$
    or, $$z=\dfrac{7+i}{25}$$.
    Then $$|z|=\sqrt{\left(\dfrac{7}{25}\right)^2+\left(\dfrac{1}{25}\right)^2}=\dfrac{\sqrt{50}}{25}=\dfrac{\sqrt{2}}{5}$$.
  • Question 9
    1 / -0
    If $$z=\dfrac{1+i}{\sqrt{2}}$$, then the value of $$z^{1929}$$ is
    Solution
    Let $$z=\dfrac{1+i}{\sqrt{2}}$$

    $$\Rightarrow |z|=\sqrt{\dfrac{1}{2}+\dfrac{1}{2}}=1$$

    $$\Rightarrow Arg=tan^{-1}(1)=\dfrac{\pi}{4}$$

    $$\therefore z^{1929}=(1\cdot e^{\dfrac{\pi i}{4}})^{1929}$$

                 $$=e^{1929 \times \dfrac{\pi i}{4}}$$

                 $$=e^{i\left(482\pi+\dfrac{\pi}{4}\right)}$$

                 $$=e^{i\dfrac{\pi}{4}}$$

                 $$=\dfrac{1}{\sqrt{2}}+i\dfrac{1}{\sqrt{2}}$$

    $$\therefore z^{1929}=\dfrac{1+i}{\sqrt{2}}$$

  • Question 10
    1 / -0
    The equation $$4\sin^2x+4\sin x+a^2-3=0$$ possesses a solution if 'a' belongs to the interval.
    Solution
    We are given, the equation
    $$4\sin^{2}x+4\sin x+a^{2}-3=0$$
    Here, $$A=4, B=4$$ & $$C=a^{2}-3$$
    now, Discriminant $$D=\sqrt{B^{2}-4 AC}$$
    $$\therefore D^{2}=B^{2}-4AC; D\ge 0$$
    here solution is possible so, 
    $$D^{2}\ge 0$$
    $$\therefore B^{2}-4AC\ge 0$$
    $$\therefore (4)^{2}-4(4)(a^{2}-3)\ge 0$$
    $$\therefore 16-16(a^{3}-3)\ge 0$$
    $$\therefore 16(1-a^{3}+3)\ge 0$$
    $$\therefore 1-a^{2}+3\ge 0$$
    $$\therefore a^{2}-4\le 0$$
    $$\therefore (a-2)(a+2)\le 0$$
    Now, From the value of a we get
    the condition $$B^{2} \ge 4 AC$$
    For that $$a\in [-2,2]$$ So that the condition will be true.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now