Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    If $$|Z|=2,|z_{2}|=3,|z_{3}=4|$$ and $$|z_{1}+z_{2}+z_{3}|=5$$ then $$|4z_{2}z_{3}+9z_{3}z_{1}+16z_{1}z_{2}|=$$

  • Question 2
    1 / -0

    If $$\dfrac{x - 3}{3 + i} + \dfrac{y - 3}{3 - i} = i $$ where $$x , y \in R$$ then

  • Question 3
    1 / -0

    Consider two quadratic expressions $$f(x)=ax^2+bx+c$$ and $$g(x)=ax^2+px+q$$, $$(b\neq q)$$ such that their discriminants are equal. If $$f(x)=g(x)$$ has a root $$x=\alpha$$, then?

  • Question 4
    1 / -0

    The complex number $$\dfrac{1 + 2i}{1 - i}$$ lies in which quadrant of the complex plane.

  • Question 5
    1 / -0

    Given $$\left| z \right| =4$$ and $$Argz=\dfrac{5z}{6}$$, then $$z$$ is

  • Question 6
    1 / -0

    The locus of $$z$$ such that $$\left| {\dfrac{{z + i}}{{z - 1}}} \right| = 2$$

  • Question 7
    1 / -0

    $$\left(\dfrac{1 + i}{1 - i}\right)^4 + \left(\dfrac{1 - i}{1 + i}\right)^4 = $$ 

  • Question 8
    1 / -0

    In the graph of the parametric equations $$\begin{cases} x={ t }^{ 2 }+t \\ y={ t }^{ 2 }-t \end{cases}$$ for integral values of t.

  • Question 9
    1 / -0

    If $$\left| {z - 1} \right| = 2$$, then the value of $$z\overline z  - z - \overline z $$ is equal to: 

  • Question 10
    1 / -0

    If $$a < b < c < d$$, then the roots of the equation $$(x-a)(x-c)+2(x-b)(x-d)=0$$ are?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now