Self Studies

Complex Numbers and Quadratic Equations Test -3

Result Self Studies

Complex Numbers and Quadratic Equations Test -3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Amplitude of $$\displaystyle \frac{1 +\sqrt 3i}{ \sqrt3 + i} $$is
    Solution
    $$\displaystyle Z= \frac{1 +\sqrt 3i}{ \sqrt3 + i} $$
    $$\displaystyle\Rightarrow \left( \frac { 1+\sqrt { 3 } i }{ \sqrt { 3 } +i }  \right) \left( \frac { \sqrt { 3 } -i }{ \sqrt { 3 } -i }  \right) =\frac { 2\sqrt { 3 } +2i }{ 4 } $$
    $$\therefore$$ Amplitude of $$Z$$ is $$\tan ^{ -1 }\left({\displaystyle \frac { 1 }{ \sqrt3 }  } \right)=\displaystyle\frac{\pi}{6}$$
    Hence, option D.



  • Question 2
    1 / -0
    The value of $$-i^{48}$$ is
    Solution
    We need to find value of $$-i^{48}$$
    The power rise to the $$i$$ is even, then the value of $$i$$ is $$-1$$.
    The power rise to the $$i$$ is odd, then the value of $$i$$ is $$-i$$.
    So, the value of $$-i^{48}=-1$$
  • Question 3
    1 / -0
    For $$i=\sqrt{-1}$$, what is the sum $$\left(7+3i\right) + \left(-8+9i\right)$$?
    Solution
    Given:   $$(7+3i)+(-8+9i)$$
            $$= (7+(-8))+(3i+9i)$$
            $$=(7-8)+12i$$
            $$=-1+12i$$
    Option A is correct.
  • Question 4
    1 / -0
    In the complex plane, what is the distance of $$4-2i$$ from the origin?
    Solution
    Let $$z=4-2i$$
    In a complex plane, distance of $$z$$ from any point origin is given by $$|z|=\sqrt{(x_1)^2+(y_1)^2}$$
    $$\therefore$$ Distance of $$z=4-2i$$ from origin is given by $$|z|=|4-2i|=\sqrt{4^2+(-2)^2}=\sqrt{20}\approx 4.47$$
    Hence, the answer is $$4.47$$.
  • Question 5
    1 / -0
    If the roots of an equation  $$p{ x }^{ 2 }+qx+r=0$$  are equal, then
    Solution
    For equal roots Discriminant has to be $$0$$
    So $${q}^{2}-4 pr = 0$$
    $$\Rightarrow q^2 = 4pr$$
  • Question 6
    1 / -0
    In the complex plane, the number 4 + j3 is located in the
    Solution
    Since both the real and imaginary parts are positive , 4 + j3 lies in first quadrant of argand/complex plane.
  • Question 7
    1 / -0
    For the quadratic equation $$ax^2 + bx + c = 0, a, b, c, \in Q$$, If $$D = 0$$ then ...................
    Choose the correct option in respect to the statements below.
    (P) The roots of the equation are equal.
    (Q) The roots of the equation are not equal.
    (R) The roots of the equation are rational numbers.
    (S) The roots of the equation has no roots.
    Solution
    For the quadratic equation $$ax^2 + bx + c = 0, a, b, c, \varepsilon Q$$

    Roots are given by 

    $$\alpha=\dfrac{-b + \sqrt{b^2 - 4ac}}{2a}$$ and 

    $$\beta=\dfrac{-b - \sqrt{b^2 - 4ac}}{2a}$$

    If $$D = 0 $$ then $$\alpha=\dfrac{-b}{2a}=\beta$$ i.e. the roots are equal and real. 

    Since $$a, b$$ and $$c \in Q$$, the roots will be equal and rational.

    Hence, statements P and R are correct.
  • Question 8
    1 / -0
    What is the modulus of $$\cfrac { \sqrt { 2 } +i }{ \sqrt { 2 } -i } $$ where $$i=\sqrt { -1 } $$
    Solution
    $$\left| \dfrac { \sqrt { 2 } +i }{ \sqrt { 2 } -i }  \right| =\dfrac { \sqrt { ({ \sqrt { 2 }  })^{2}+{ 1 }^{ 2 } }  }{ \sqrt { (\sqrt { 2 })^{ 2 }+(-1)^{ 2 } }  } =1$$
    Hence, option C is correct.
  • Question 9
    1 / -0
    If $$\cos { \left( \log { { i }^{ 4i } }  \right)  } =a+ib$$, then
    Solution
    Given, $$a+ib=\cos { \left( \log { { i }^{ 4i } }  \right)  } $$
    $$=\cos { \left[ 4i\log { i }  \right]  } =\cos { \left[ 4i\log { \left( { e }^{ i\cfrac { \pi  }{ 2 }  } \right)  }  \right]  } =\cos { \left[ \left( 4i \right) \left( i\cfrac { \pi  }{ 2 }  \right)  \right]  } =\cos { \left( -2\pi  \right)  } =1$$
    $$\therefore a=1;b=0$$
  • Question 10
    1 / -0
    If ............, then the quadratic equation does not have real solution.
    Solution
    The general form of quadratic equation is given by $$ax^2+bx+c=0$$ ... $$(i)$$

    Let $$\alpha, \beta$$ be roots of quadratic equation $$(i)$$

    $$\alpha =\dfrac{-b-\sqrt{b^2-4ac}}{2a}$$ and $$\beta =\dfrac{-b+\sqrt{b^2-4ac}}{2a}$$

    The expression $$D=b^2-4ac$$ is the discriminant

    If $$D>0$$, then $$\alpha$$ and $$\beta$$ are real.

    If $$D=0$$, then $$\alpha=\beta$$

    If $$D<0$$, then $$\alpha$$ and $$\beta$$ are not real. 

    So, when $$D< 0$$, the quadratic equation does not have any real roots.
    Hence, option C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now