Self Studies

Complex Numbers and Quadratic Equations Test 32

Result Self Studies

Complex Numbers and Quadratic Equations Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Argument and modules of $$[\dfrac{1+i}{1-i}]^{2\pi i}$$ are respectively................. 
    Solution
    $$ (\dfrac{1+i}{1-i})^{2\pi i}$$
    let $$ 2 = (\dfrac{1+i}{1-i})^{2\pi i}$$
    Rationalizing the above, we get
    $$ = \dfrac{(1+i)^2}{(1)^2-(i)^2} = \dfrac{1+(i)^2+2i}{1-(-1)} = \dfrac{1-1+2i}{1+1} = \dfrac{2i}{2} = i $$
    $$ z = 0+i =  1$$
    here x =0 ,y = 1 
    modules of $$ 2 = \sqrt{x^2 + y^2 } = \sqrt{0+1^2} = 1 $$
    modules of z = 1 
    $$ z =i , $$ As per the question, $$(i)^{2\pi i }$$
    & $$ z = r(cos\theta + sin\theta) $$
    $$ \Rightarrow (r(cos\theta + 1sin \theta))^{2\pi i}$$
    $$ = [r(cos(2\pi i))+\theta +i sin (2\pi i )\theta ]$$
    $$ (i)^{2\pi i} = (r)^{2\pi i}$$
    $$ \Rightarrow r = i $$
    $$ r^2 cos^2 \theta = 0 ; r^2 sin^2 \theta = 1$$
    $$ tan \theta  = \dfrac{\pi}{2}$$
    $$ 0+1 = r^2 cos^2\theta +r sin^2 \theta $$
    $$ 1 = r^2(cos^2 \theta + sin^2 \theta)$$
    $$ 1 = r^2 \Rightarrow r = 1 $$
    argument of$$ z = \dfrac{\pi}{2}$$
    Option (D) is correct.

  • Question 2
    1 / -0
    If $$z_{1}$$ and $$z_{2}$$ are two non zero complex numbers such that $$|z_{1}+z_{2}|=|z_{1}|+|z_{2}|$$ then $$arg\ z_{1} $$-$$arg\ z_{2}$$ is equal to
    Solution
    A] Let $$ z_{1} = cos\theta _{1}+i\,sin\theta _{1} $$
    $$ z_{2} = cos\theta _{2}+i\,sin\theta _{2} $$
    $$ z_{1}+z_{2} = (cos\theta _{1}+cos\theta _{2})+i(sin\theta _{1}+sin\theta _{2}) $$
    As $$ |z_{1}+z_{2}| = |z_{1}|+|z_{2}| $$
    $$ = \sqrt{(cos\theta _{1}+cos\theta _{2})^{2}+(sin\theta _{1}+sin\theta _{2})^{2}} = 1+1 $$
    $$ = 2(1+cos(\theta _{1}-\theta _{2})) = 4 $$ [squaring]
    $$ = cos(\theta _{1}-\theta _{2}) = 1 $$
    $$ = \theta _{1}-\theta _{2} = 0 $$     [as $$ cos0^{\circ} = 1$$]
    $$ = Arg z_{1}-Argz_{2} = 0 $$  

  • Question 3
    1 / -0
    If $$\theta$$ and $$\phi$$ are the roots of the equation $$8x^{2}+22x+5=0$$, then
    Solution
    Solving given quadratic eq., we get

    $$8x^2+22x+5=0$$

    $$\implies (4x+1)(2x+5)=0$$

    $$\implies x=\dfrac{-1}{4}, \dfrac{-5}{2}$$

    Hence these values are not in the range of $$sec^{-1}x$$ and $$sin^{-1}x$$

    So, $$tan^{-1}\theta$$ and $$tan^{-1}\phi$$ are real
  • Question 4
    1 / -0
    The figure formed by four points $$1+0i;-1+0i,3+4i$$ and $$\cfrac{25}{-3-4i}$$ on the argand plane is
    Solution
    $$1+0i, -1+0i, 3+4i, \dfrac{25}{-3-4i}$$
    $$\dfrac{25}{-3-4i}\dfrac{(-3+4i)}{(-3+4i)}$$
    $$=\dfrac{25(-3+4i)}{25}=-3+4i$$.

  • Question 5
    1 / -0
    The amplitude of $$\cfrac { 1+\sqrt { 3i }  }{ \sqrt { 3 } +1 } $$ is
    Solution
    $$\displaystyle \frac{1}{\sqrt{3}+1}+\frac i{\sqrt{3}}{\sqrt{3}+1}$$

    $$\displaystyle \tan^{-1}\left ( \frac{\sqrt{3}/\sqrt{3}+1}{1/\sqrt{3}+1} \right )$$ 

    $$=\tan^{-1}(\sqrt{3})$$

    $$=\dfrac{\pi}{3}$$
  • Question 6
    1 / -0
    If $$z=(3+7i)(p+iq)$$, where $$p,q\in I-\left\{ 0 \right\} $$, is a purely imaginary, then minimum value of $${ \left| z \right|  }^{ 2 }$$ is
    Solution
    $$z=(3+7i)(p+iq) \quad \dots (1)$$

    $$z=(3p-7q)+i(3q+7p)$$

    Now, $$z$$ is purely imaginary

    $$3p-7q=0$$

    or $$\cfrac{p}{q}=\cfrac{7}{3}$$

    $$\cfrac{p}{q}+i=\cfrac{7}{3}+i$$

    Therefore, $$\cfrac{(p+qi)}{q}=\cfrac{7+3i}{3}$$

    $$p+iq=7+3i \quad \dots (2)$$

    Substitute $$(2)$$ in  $$(1)$$

    $$z=21+9i+49i-21$$

    Thus, $$z=58i$$

    $$\left| { z }^{ 2 } \right| =3364$$
  • Question 7
    1 / -0
    If $$z=\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}i$$ then $$z\bar{z}$$ is
    Solution
    Conjugate of $$\dfrac{\sqrt{3}+i}{2}=\dfrac{\sqrt{3}-i}{2}$$
    $$\therefore\,\bar{z}=\dfrac{\sqrt{3}-i}{2}$$
    Now,$$z\bar{z}=\left(\dfrac{\sqrt{3}+i}{2}\right)\left(\dfrac{\sqrt{3}-i}{2}\right)=\dfrac{3-{i}^{2}}{4}=\dfrac{3+1}{4}=\dfrac{4}{4}=1$$
  • Question 8
    1 / -0
    If $$Z = \frac{{1 - \sqrt 3 i}}{{1 + \sqrt 3 i}}$$ then find $$arg(z).$$
    Solution

    Consider the following question.

    $$ Z=\dfrac{1-\sqrt{3}i}{1+\sqrt{3i}} $$

    $$ =\dfrac{\left( 1-\sqrt{3}i \right)}{\left( 1+\sqrt{3i} \right)}\times \dfrac{\left( 1-\sqrt{3}i \right)}{\left( 1-\sqrt{3}i \right)} $$

    $$ =\dfrac{{{\left( 1-\sqrt{3}i \right)}^{2}}}{1+3} $$

    $$ =\dfrac{1+3{{i}^{2}}-2\sqrt{3}}{4} $$

    $$ =\dfrac{1-3-2\sqrt{3}}{4} $$

    $$ =\dfrac{-1-i\sqrt{3}}{2} $$

    $$ =-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} $$

    $$ \arg \left( -\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \right)=-\pi +\dfrac{\pi }{3} $$

    $$ =\dfrac{2\pi }{3} $$


    Hence, this is the required answer.

  • Question 9
    1 / -0
    If $$\left| {z + 2 - i} \right| = 5$$ then the maximum value of $$\left| {3z + 9 - 7i} \right|$$ is 
    Solution

  • Question 10
    1 / -0
    What is the modulus of following complex number:$$-2+2\sqrt { 3i } $$

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now