Self Studies

Complex Numbers and Quadratic Equations Test 33

Result Self Studies

Complex Numbers and Quadratic Equations Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve $$i^{57}+\dfrac{1}{i^{125}}$$
    Solution
    We know that $${i}^{2}=-1$$
    $${i}^{3}={i}^{2}.i=-i$$
    $${i}^{4}={i}^{2}\times {i}^{2}=-1\times -1=1$$
    Thus, $${i}^{57}={\left({i}^{4}\right)}^{14}\times i={1}^{14}\times i=i$$
    $${i}^{125}={\left({i}^{4}\right)}^{31}\times i={1}^{4}\times i=i$$
    $$\dfrac{1}{{i}^{125}}=\dfrac{1}{i}$$
    $$\dfrac{1}{i}=\dfrac{1}{i}\times\dfrac{i}{i}=\dfrac{i}{{i}^{2}}=-i$$
    Now $${i}^{57}+\dfrac{1}{{i}^{125}}=i+\left(-i\right)=i-i=0$$
  • Question 2
    1 / -0
    If $$z=(3+7i)(p+iq)$$ where $$p,q\in I-\left\{ 0 \right\} $$, is purely imaginary then minimum value of $${ \left| z \right|  }^{ 2 }$$ is
    Solution

  • Question 3
    1 / -0
    The value of $$2x^{4}+5x^{3}+7x^{2}-x+41$$, when $$x=-2-\sqrt{3i}$$ is:
    Solution
    $$ 2x^{4}+5x^{3}+4x^{2}-x+41 $$ ---(1)
    when $$ x = -2-\sqrt{3}i = -(2+\sqrt{3}i) $$---(2)
    $$ x^{2} = (2+\sqrt{3}i)^{2} $$
    $$ = 4+3(i)^{2}+4\sqrt{3}i $$ 
    $$ =4-3+4\sqrt{3}! $$  $$ (\because i^{2} = -1) $$
    $$ x^{2} = 1+4\sqrt{3}i $$ ---(3)
    $$ x^{3} = x^{2}.x $$
    $$ = (1+4\sqrt{3}i)[-(2+\sqrt{3}i)] $$
    $$ = -(2+\sqrt{3}i+8\sqrt{3}i+12!^{2}) $$
    $$ = -(2-12+9\sqrt{3}i) $$
    $$ x^{3} = 10-9\sqrt{3}i $$ ---(4)
    $$ x^{4} = (x^{2})^{2} $$ 
    $$ = (1+4\sqrt{3}i)^{2} $$
    $$ = 1+48!^{2}+8i\sqrt{3} $$
    $$ = 1-48+8i\sqrt{3} $$ $$ (i^{2} = -1) $$
    $$ x^{4} = -47+8!^{3} $$---(5) 
    From (1),(2),(3),(4) and (5) 
    $$ 2(-47+8i\sqrt{3})+5(10-9\sqrt{3}i)+7(1+4\sqrt{3}i)-(-2\sqrt{3}i)+41$$ $$ -94+16i\sqrt{3}+50-45\sqrt{3}i+7+28\sqrt{3}i+2+\sqrt{3}i+41 $$ 
    $$ = 6 $$  d)

  • Question 4
    1 / -0
    If $$Re(\dfrac{z+2i}{z+4})=0$$ then z lies on a circle with center:
    Solution
    Let $$z=x+ iy$$
    Then 

    $$w=\dfrac{z+2i}{z+4}=\dfrac{x+i(2+y)}{(x+4)+iy}$$
    Rationalizing we get:

    $$w=\dfrac{z+2i}{z+4}=\dfrac{x+i(2+y)}{(x+4)-iy}\times \dfrac{x+4-iy}{x+4+iy}=\dfrac{x^2+4x+y^2+2y+i(xy+2x+4y+xy+8)}{(x+4)^2+y^2}$$
    Since real part of $$w$$ is 0, hence

    $$(x+2)^2+(y+1)^2-5=0$$

    Hence centre of circle is $$(-2,-1)$$
  • Question 5
    1 / -0
    If $$z_{1}=8 +4i,\ z_{2}=6+4i$$ and $$arg \left(\dfrac {z-z_{1}}{z-z_{2}}\right)=\dfrac {\pi}{4}$$, then $$z$$ satisfy 
  • Question 6
    1 / -0
    The argument of the complex number $$\sin \dfrac{{6\pi }}{5} + i\left( {1 + \cos \dfrac{{6\pi }}{5}} \right)$$ is 
    Solution
    Given that

    $$\sin { \cfrac { 6\pi  }{ 5 }  } +i\left( 1+\cos { \cfrac { 6\pi  }{ 5 }  }  \right) $$

    Notice the point $$\sin { \left( \cfrac { 6\pi  }{ 5 }  \right)  } +i\left( 1+\cos { \cfrac { 6\pi  }{ 5 }  }  \right) $$ or

    $$-\sin { \left( \cfrac { 6\pi  }{ 5 }  \right)  } +i\left( 1-\cos { \cfrac { \pi  }{ 5 }  }  \right) $$ lies in the second quadrant of complex plane hence its argument is given as

    $$arg\left( z \right) =\pi -\tan ^{ -1 }{ \left| y/x \right|  } \quad $$  ($$\because z=x+iy$$)

    $$\left( \forall x<0,y\ge 0 \right) $$

    $$arg(z)=\pi -\tan ^{ -1 }{ \left| \cfrac { 1-\cos { \cfrac { \pi  }{ 5 }  }  }{ \sin { \cfrac { \pi  }{ 5 }  }  }  \right|  } $$

    $$=\pi -\tan ^{ -1 }{ \left| \cfrac { 2\sin ^{ 2 }{ \cfrac { \pi  }{ 10 }  }  }{ 2\sin { \cfrac { \pi  }{ 10 }  } \cos { \cfrac { \pi  }{ 10 }  }  }  \right|  } =\pi -\tan ^{ -1 }{ \left| \cfrac { \sin { \cfrac { \pi  }{ 10 }  }  }{ \cos { \cfrac { \pi  }{ 10 }  }  }  \right|  } $$

    $$=\pi -\tan ^{ -1 }{ \left| \tan { \cfrac { \pi  }{ 10 }  }  \right|  } \left( \because \tan ^{ -1 }{ \cfrac { \pi  }{ 10 }  } >1 \right) $$

    $$=\pi -\cfrac { \pi  }{ 10 } \left( \because -\cfrac { \pi  }{ 2 } \le \tan ^{ -1 }{ x } \le \cfrac { \pi  }{ 2 }  \right) $$

    $$arg(z)=\cfrac{9\pi}{10}$$
  • Question 7
    1 / -0
    If $$a, b \notin R$$, then $$|e^{a + ib}| $$ is equal to

    Solution
    $$|e^{a + ib}| = |e^a . e^{ib}|$$

                $$= |e^a . (\cos b + i \sin b)|$$

                $$= e^a |(\cos b + i \sin b)|$$

                $$= e^a . \sqrt{(\cos b)^2 + (\sin b)^2}$$

                $$= e^a . \sqrt{1}$$

                $$= e^a$$
  • Question 8
    1 / -0
    If $$z_{1} and z_{2} are on straight line$$ $$\left| \frac { 1 } { 2 } \left( z _ { 1 } + z _ { 2 } \right) + \sqrt { z _ { 1 } z _ { 2 } } \right| + \left| \frac { 1 } { 2 } \left( z _ { 1 } + z _ { 2 } \right) - \sqrt { z _ { 1 } z _ { 2 } } \right| =$$
    Solution

  • Question 9
    1 / -0
    If $$z_{1}$$ and $$z_{2}$$ two non-zero complex number such that $$|z_{1}+z_{2}|=|z_{1}|+|z_{2}|$$, then $$arg z_{1}-arg z_{2}$$ is equal to
    Solution
    $$\left| z_1+z_2\right|=\left| z_1\right| +\left| z_2\right|$$
    $$\Rightarrow  z_1 \;\&\; z_2$$ are collinear and in same direction.
    $$\Rightarrow arg \left(z_1\right)-arg\left(z_2\right)=0.$$
    Hence, the answer is $$0.$$

  • Question 10
    1 / -0
    $$z$$ is a complex number. If $$a = | x | + | y |$$ and
    $$b = \sqrt { 2 } | x + i y |$$ then which of the following is
    true

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now