Self Studies

Complex Numbers and Quadratic Equations Test 38

Result Self Studies

Complex Numbers and Quadratic Equations Test 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of solutions of $$log _{\frac{1}{5}}log_{\frac{1}{2}}(\left | z \right |^{2}+4\left | z \right |+3)< 0$$ is/are?
    Solution
    The glven inequality becomes $$log_{\frac{1}{2}}|\mathrm{z}|^{2}+4|\mathrm{z}|+3>1$$, since $$\displaystyle \frac{1}{5}<1$$
    $$\displaystyle \Rightarrow|\mathrm{z}|^{2}+4|\mathrm{z}|+3<\frac{1}{2}$$ 
    $$\Rightarrow(|\mathrm{z}|+2)^{2}$$ + 1 $$<\displaystyle \frac{1}{2}$$
    $$(|\displaystyle \mathrm{z}|+2)^{2}<\frac{-1}{2}$$
    This is not possible. Hence, there is no solution. 
  • Question 2
    1 / -0
    If $$ \alpha, \beta  $$ are the roots of equation $$(k + 1) x^{2} - (20k + 14)x + 91k + 40 = 0 ; (\alpha < \beta)$$, $$k > 0$$, then 
    The nature of the roots of this equation is
    Solution
    Given equation is

    $$(k + 1) x^{2} - (20k + 14)x + 91k + 40 = 0$$

    $$D=(20k+14)^{2}-4(k+1)(91k+40)=discriminant$$


    $$\Rightarrow D=36(k^{2}+k+1)\ge0$$..........$$(\because k^2 \  and \   k \  are \ always \  positive \  for \  all \  k>0)$$

    $$\because D>0$$

    $$\therefore \  the \  equation \  has \  real \  roots$$

    Hence, option $$B$$ is correct.
  • Question 3
    1 / -0
    Let $$z$$ be a complex number and $$c$$ be a real number $$\geq $$ 1 such that z + $$c\left | z+1 \right |+i=0 ,$$ then $$c$$ belongs to 
    Solution
    Since $$c$$ $$\left | z+1 \right |$$ is real
    $$z + i$$ is real
     let $$z-i = x $$, where $$x$$ is real
    $$z+i=-c$$ $$\left | z+1 \right |$$  (given)
    $$x^{2}=c^{2}\left \{ x+1 \right \}^{2}+1^{2})$$ 
    $$(c^{2}-1)x^{2}+2c^{2}x+2c^{2}=0$$ 
    As $$x$$ is real $$4c^{4}-8c^{2}(c^{2}-1)\geq 0$$ 
    $$4c^{2}-(c^{2}-2)\leq 0$$ 
    $$c^{2}\leq 2$$ 
    $$c\leq \sqrt{2}$$
    But $$c\geq1$$ 
    $$\Rightarrow c\, \, \epsilon [1,\sqrt{2}]$$ 
  • Question 4
    1 / -0
    lf $$\displaystyle \log_{\tan 30^{\circ}}\left(\frac{2|Z|^{2}+2|Z|-3}{|z|+1}\right) <-2$$ then
    Solution
    we have,
    $$\Rightarrow  log_{(\dfrac{1}{\sqrt{3}})}(\dfrac{2|z|^{2}+2|z|-3}{|z|+1})<-2$$

    $$\Rightarrow \dfrac{2|z|^{2}+2|z|-3}{|z|+1}>(\dfrac{1}{\sqrt{3}})^{-2}=(\sqrt{3})^{2}=3$$    [as$$\dfrac{1}{\sqrt{3}}<1$$ so equality sign changes]

    $$\Rightarrow 2|z|^{2}+2|z|-3>3|z|+3$$

    $$\Rightarrow 2|z|^{2}-|z|-6>0$$

    $$\Rightarrow 2|z|^{2}-4|z|+3|z|-6>0$$

    $$\Rightarrow 2|z|  (|z|-2)+3  (|z|-2)>0$$

    $$\Rightarrow (2|z|+3)  (|z|-2)>0$$

    $$\Rightarrow |z|>2$$

  • Question 5
    1 / -0
    If $$x = 2 + 5i($$where $$1 i = \sqrt{-1})$$ and $$2(\displaystyle \frac{1}{1! 9!}  + \frac{1}{3! 7!}) + \frac{1}{5! 5!} = \frac{2^{a}}{b!}$$ then $$ x^{3}-5x^{2}+33x-10 = $$
    Solution
    $$ \displaystyle \frac{10! 2^{a}}{b!} = 2[^{10}C_{1} + ^{10}C_{3}] + ^{10} C_{5}$$

    $$ \displaystyle  \frac{10! 2^{a}}{b!} = ^{10}C_{1} + ^{10}C_{3} + ^{10}C_{5} + ^{10}C_7 + ^{10}C_{9} = 2^{9}$$

    $$ \therefore  a = 9, b = 10$$

    $$ x = 2 + 5i$$
    $$ (x - 2)^{2} = - 25$$
    $$x^{2} - 4x + 29 = 0$$
    $$ \therefore  x^{3} - 5x^{2} + 33x - 10 = (x - 1)(x^{2} - 4x + 29) + 19$$
    $$\Rightarrow 19 = a + b$$
  • Question 6
    1 / -0
    If $$b_1b_2=2(c_1+c_2)$$, then at least one of the equations $$x^2+b_1x+c_1=0$$ and $$x^2+b_2x+c_2=0$$ has
    Solution
    Suppose the equations $$x^2+b_1x+c_1=0$$ & $$x^2+b_2x+c_2=0$$ have real roots.
    Then $${ b_{ 1 } }^{ 2 }\ge 4c_{ 1 }$$       ...(1)
    and $${ b_{ 2 } }^{ 2 }\ge 4c_{ 2 }$$        ...(2)
    given that $$b_{ 1 }b_{ 2 }=2(c_{ 1 }+c_{ 2 })$$
    On squaring $${ b_{ 1 } }^{ 2 }{ b_{ 2 } }^{ 2 }=4\left( { c_{ 1 } }^{ 2 }+{ c_{ 2 } }^{ 2 }+2c_{ 1 }c_{ 2 } \right) =4\left[ { \left( c_{ 1 }-c_{ 2 } \right)  }^{ 2 }+4c_{ 1 }c_{ 2 } \right] $$
    $$\Rightarrow { b_{ 1 } }^{ 2 }{ b_{ 2 } }^{ 2 }-16c_{ 1 }c_{ 2 }=4{ \left( c_{ 1 }-c_{ 2 } \right)  }^{ 2 }\ge 0$$
    Multiplying (1) & (2), we get
    $${ b_{ 1 } }^{ 2 }{ b_{ 2 } }^{ 2 }\ge 16c_{ 1 }c_{ 2 }$$
    Therefore, at least one equation have real roots.

    Ans: B
  • Question 7
    1 / -0
    If $$x=9^{\frac {1}{3}} 9^{\frac {1}{9}} 9^{\frac {1}{27}} .....\infty, y=4^{\frac {1}{3}} 4^{\frac {-1}{9}} 4^{\frac {1}{27}}....\infty,$$ and $$z=\sum_{r=1}^{\infty} (1+i)^{-r}$$, then $$arg (x+yz)$$ is equal to
    Solution

    $$x=9^{\dfrac{1}{3}+\dfrac{1}{3^{2}}+\dfrac{1}{3^{3}}...\infty}$$
    $$x=9^{\dfrac{\dfrac{1}{3}}{1-\dfrac{1}{3}}}$$
    $$x=9^{\dfrac{1}{2}}$$
    $$x=3$$
    $$y=4^{\dfrac{1}{3}-\dfrac{1}{3^{2}}+\dfrac{1}{3^{3}}...\infty}$$
    $$y=4^{\dfrac{\dfrac{1}{3}}{1+\dfrac{1}{3}}}$$
    $$y=4^{\dfrac{1}{4}}$$
    $$y=2^{\dfrac{1}{2}}$$
    $$y=\sqrt{2}$$
    $$z=\dfrac{1}{(1+i)^{1}}+\dfrac{1}{(1+i)^{2}}+\dfrac{1}{(1+i)^{3}}...\infty$$
    Since it is a G.P with a common ratio of $$\dfrac{1}{(1+i)}$$ we get the sum as
    $$=\dfrac{\dfrac{1}{1+i}}{1-\dfrac{1}{1+i}}$$
    $$=\dfrac{1}{i}$$
    $$=-i$$.
    Hence $$x+yz =3-\sqrt{2}i$$
    $$\tan\theta=\dfrac{-\sqrt{2}}{3}$$
    $$\theta=\tan^{-1}(\dfrac{-\sqrt{2}}{3})$$
    $$=-\tan^{-1}(\dfrac{\sqrt{2}}{3})$$

  • Question 8
    1 / -0
    The argument of the complex number $$\sin \frac{6\pi }{5}+i\left ( 1+\cos \frac{6\pi }{5} \right )$$ is
    Solution
     

    $$\sin\dfrac{6\pi}{5}+i(1+\cos\dfrac{6\pi}{5})$$
    $$=2\sin\dfrac{3\pi}{5} \cos\dfrac{3\pi}{5} +2i\cos^2\dfrac{3\pi}{5}$$
    $$=-2\cos\dfrac{3\pi}{5}(-\sin\dfrac{3\pi}{5}-i\cos\dfrac{3\pi}{5})$$          
    $$=-2\cos\dfrac{3\pi}{5}(\cos\dfrac{9\pi}{10}+i\sin\dfrac{9\pi}{10})$$
    So argument is $$\dfrac{9\pi}{10}$$

  • Question 9
    1 / -0
    Find the value of $$x$$ such that $$\displaystyle \frac{(x + \alpha)^2 - (x + \beta)^2}{ \alpha + \beta} = \frac{sin  2 \theta}{sin^2  \theta}$$. when $$\alpha$$ and $$\beta $$ are the roots of $$t^2 - 2t + 2 = 0$$
    Solution
    $$t^{2}-2t+2=0$$
    $$(t-1)^{2}-1+2=0$$
    $$(t-1)^{2}=-1$$
    $$t=1\pm i$$
    Hence
    $$\alpha+\beta=2$$
    $$\alpha-\beta=2i$$
    Now let $$n=2$$
    We get 
    $$\dfrac{2x(\alpha-\beta)+\alpha^{2}-\beta^{2}}{2}=\dfrac{sin2\theta}{sin^{2}\theta}$$
    Hence
    $$\dfrac{4ix+2i-(-2i)}{2}=\dfrac{2sin\theta.cos\theta}{sin^{2}\theta}$$

    $$2ix+2i=2cot\theta$$
    $$ix=cot\theta-i$$
    $$-x=icot\theta+1$$
    $$x=-(1+icot\theta)$$
  • Question 10
    1 / -0
    The complex numbers $$\sin  x + i  \cos  2x$$  and  $$\cos  x - i  \sin  2x$$ are conjugate to each other, for
    Solution
    We have, 
    $$\sin x = \cos x $$ - (i) 
    and $$\cos 2x = \sin 2x $$ -(ii)
    Hence, 
    $$ \cos^2x - \sin^2x = 2 \sin x \cos x$$
    $$\Rightarrow 0 = 2 \sin^2 x $$
    $$\Rightarrow \sin x =0 $$ 
    However, $$\sin  x \neq \cos x$$
    Hence, there is no value of $$x$$ satisfying the given condition. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now