Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    If $$z_1, z_2$$ be two non zero complex numbers satisfying the equation $$\displaystyle \left | \frac{z_1 + z_2}{z_1 - z_2} \right | = 1$$ then $$\displaystyle \frac{z_1}{z_2} + \left ( \frac{z_1}{z_2} \right )$$ is

  • Question 2
    1 / -0

    Interpret the following equations geometrically on the Argand plane.
    $$1 < |z - 2 - 3 i| < 4$$

  • Question 3
    1 / -0

    Find the range of real number $$\alpha$$ for which the equation $$z + \alpha |z - 1| + 2i = 0;  z= x + iy$$ has a solution. Find the solution.

  • Question 4
    1 / -0

    Let $$\displaystyle z=1+i\:b=(a,b)$$  be any complex number, $$\displaystyle a,b,\epsilon R$$ and $$\displaystyle \sqrt{-1}=i.$$ Let $$\displaystyle z\neq 0+0i,arg z=\tan^{-1}\left (\frac{Im\:z}{Re\:z}\right)$$ where $$\displaystyle -\pi<arg z\leq \pi$$ 

    $$\displaystyle arg(\bar{z})+arg(-z)=\left\{\begin{matrix}\pi, \; if\: arg (z)<0 & \\ -\pi, \; if\: arg (z)>0 & \end{matrix}\right.$$

    Let $$z$$ & $$w$$ be non-zero complex numbers such that they have equal modulus values and $$\displaystyle arg z- arg  \bar{w} =\pi,$$ then z equals

  • Question 5
    1 / -0

    If z be a complex number satisfying$$\displaystyle\ z^{4}+z^{3}+2z^{2}+z+1=0$$ then $$\displaystyle\ |z|$$ is 

  • Question 6
    1 / -0

    If $$z = x+iy$$ and $$w = \dfrac{(1-iz)}{(z-i)}$$, then $$|w| = 1$$ implies that, in the complex plane

  • Question 7
    1 / -0

    $$\displaystyle { \left( \frac { \sqrt { 3 } +i }{ 2 }  \right)  }^{ 6 }+{ \left( \frac { i-\sqrt { 3 }  }{ 2 }  \right)  }^{ 6 }=$$

  • Question 8
    1 / -0

    Let $$\displaystyle\ z_{1}= a+ib, z_{2}= p+iq$$ be two unimodular complex numbers such that $$\displaystyle\ Im(z_{1}z_{2})=1$$. If$$\displaystyle\ \omega_{1}= a+ip, \omega_{2}=b+iq$$ then

  • Question 9
    1 / -0

    The root of $$(x + a) (x + b) - 8k = (k - 2)^2$$ are real and equal, when $$a,b,c$$ $$\epsilon$$ R, then

  • Question 10
    1 / -0

    If $$\displaystyle y^{2}< x$$ and $$\displaystyle x\in \left ( -\infty ,0 \right )$$  then $$y$$ must

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now