Self Studies

Complex Numbers and Quadratic Equations Test 40

Result Self Studies

Complex Numbers and Quadratic Equations Test 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a, b, c$$ are real distinct numbers satisfying the condition $$a + b + c = 0$$, then the roots of the quadratic equation $$3ax^2 + 5bx + 7c = 0$$ are
    Solution
    Given equation is : $$3a{ x }^{ 2 }+5bx+7c=0$$
    Also given is that $$a+b+c=0\dots(1)$$ 

    Discriminant of the equation $$\Rightarrow  D =b^2-4ac $$

    $$= { \left( 5b \right)  }^{ 2 }-4\left( 3a \right) \left( 7c \right)$$ 

    $$ = 25{ b }^{ 2 }-84ac\dots(2)$$ 

    Substituting the value of b from equation (1) in equation (2),we get

    D $$=25{ \left( -a-c \right)  }^{ 2 }-84ac$$

    $$ =25{ \left( a+c \right)  }^{ 2 }-84ac$$

    $$= 25{ a }^{ 2 }+25{ c }^{ 2 }-34ac$$

    $$= 4{ a }^{ 2 }+4{ c }^{ 2 }+8ac$$ + $$21{ a }^{ 2 }+{ 21c }^{ 2 }-42ac$$ 

    $$= 4{ \left( a+c \right)  }^{ 2 }+21{ \left( a-c \right)  }^{ 2 }> 0$$ 

    Since D>0,both the roots will be real and distinct. 

    Also,in the absence of information on the coefficients a,b and c in the equation we can't conclude whether both the roots will be positive or negative.

    Hence,option (C) is the correct alternative.

  • Question 2
    1 / -0
    Find the modulus, argument and the principal argument of the complex numbers.
    $$z=1+cos\frac {10\pi}{9}+i sin \left (\frac {10\pi}{9}\right )$$
    Solution
    Simplifying, we get 
    $$z=2\cos^{2}\left(\dfrac{5\pi}{9}\right)+2i\sin\left(\dfrac{5\pi}{9}\right)\cos \left(\dfrac{5\pi}{9}\right)$$

    $$=2\cos \left(\dfrac{5\pi}{9}\right)[\cos \left(\dfrac{5\pi}{9}\right)+i\sin\left(\dfrac{5\pi}{9}\right)]$$

    $$=-2\cos \left(\dfrac{4\pi}{9}\right)[-\cos \left(\dfrac{4\pi}{9}\right)+i\sin\left(\dfrac{4\pi}{9}\right)]$$

    $$=2\cos \left(\dfrac{4\pi}{9}\right)[\cos \left(\dfrac{4\pi}{9}\right)-i\sin\left(\dfrac{4\pi}{9}\right)]$$
    Hence
    $$|z|=2\cos \left(\dfrac{4\pi}{9}\right)$$
    And 
    Principal Arg$$\left(z\right)=-\dfrac{4\pi}{9}$$
  • Question 3
    1 / -0
    Dividing $$ f(z) $$ by $$ z - i$$ we obtain the remainder i and dividing it by $$ z + i$$ we get the remainder $$1 + i$$ then remainder upon the division of $$ f(z)$$ by $$ z^{2} + 1$$ is
    Solution

  • Question 4
    1 / -0
    If the equation $$ \displaystyle 4x^{2}+x\left ( p+1 \right )+1=0 $$  has exactly two equal roots , then one of the value of $$p$$ is
    Solution
    Since the equation $$\displaystyle 4x^{2}+x(p+1)+1=0$$ has two equal roots therefore
    Discriminant$$=0$$
    or $$\displaystyle b^{2}-4ac=0$$
    or $$\displaystyle (p+1)^{2}-4\times 4\times 1=0$$
    or $$\displaystyle p^{2}+2p+1-16=0$$
    or $$\displaystyle p^{2}+2p-15=0$$
    or $$\displaystyle \left ( p+5 \right )\left ( p-3 \right )=0$$
    $$\displaystyle \therefore p=-5$$ or $$p=3  $$
    Hence, one of the values of $$p = 3$$.
  • Question 5
    1 / -0
    If $$(\sqrt 3-i)^n=2^n, n\in N$$, then $$n$$ is a multiple of
    Solution
    $$\sqrt3-i = 2\left(\dfrac{\sqrt{3}-i}{2}\right)$$
    $$=2.e^{-i\frac{\pi}{6}}$$
    Hence, $$\left(2.e^{-i\frac{\pi}{6}}\right)^{n}=2^{n}$$

    $$2^{n}e^{-i\frac{n\pi}{6}}=2^{n}.e^{i2k\pi}$$,     $$k\in N$$
    $$\because e^{i2k\pi} = 1$$

    Hence, $$-\dfrac{n\pi}{6}=2k\pi$$
    $$-n=12k$$
    Now $$\cos(-x)=\cos x$$
    Hence, $$n=12k$$
    Where $$k$$ is a natural number.
  • Question 6
    1 / -0
    Find the modulus, argument and the principal argument of the complex numbers.
    $$(tan 1-i)^2$$
    Solution
    Let 
    $$z=\tan1-i$$
    Then
    $$|z|=\sqrt{\tan^{2}1+1}=\sec1$$

    $$Arg(z)=\tan^{-1}(\dfrac{-1}{\tan1})$$

    $$=-\tan^{-1}(cot(1))$$

    $$=-(\dfrac{\pi}{2}-\cot^{-1}(cot(1)))$$

    $$=1-\dfrac{\pi}{2}$$

    Hence
    $$Z=(\tan1-i)^{2}=z^{2}=|z|^{2}.e^{2i.(1-\frac{\pi}{2})}$$

    $$=\sec^{2}(1)e^{i.(2-\pi)}$$
    Hence
    $$|Z|=\sec^{2}(1)$$ and principal Arg(z)=$$(2-\pi)$$.
  • Question 7
    1 / -0
    The set of all real values of $$p$$ for which the equation $$x + 1 = \displaystyle \sqrt{px}$$ has exactly one root is
    Solution
    The equation can be written as $$x^{ 2 }+(2-p)x+1$$
    The equation will have exactly 1 root if the equation is a perfect square,
    $$\Longrightarrow b^{ 2 }-4ac=0$$
    $$\Longrightarrow (2-p)^{ 2 }-4=0$$
    $$\Longrightarrow |2-p|=2$$
    $$ \Longrightarrow 2-p=2$$ or $$2-p=-2$$,
    $$ p=0,4$$
  • Question 8
    1 / -0
    Given that $$i = \sqrt {-1}$$, find the multiplicative inverse of $$5 - i$$.
    Solution
    Let the multiplicative inverse of $$5-i$$ be $$a+bi$$ 
    Therefore we have $$(5-i)(a+bi) = 1$$
    $$\Rightarrow 5a+b +i(5b-a) = 1$$ 
    $$\Rightarrow 5a+b = 1$$ and $$5b-a = 0$$
    $$\Rightarrow a=5b$$ 
    Substitute this in $$5a+b =1$$, we get 
    $$b = \dfrac {1}{26}$$ and $$a = \dfrac {5}{16}$$
    Therefore, multiplicative inverse is $$\dfrac {(5+i)}{26}$$.
  • Question 9
    1 / -0
    If $$(cos\theta+i\, sin \theta)\,\,( cos\,2\theta+i\,sin\,\theta)$$ ....
    $$(cos\, n\theta +i\,sin\,n\theta) = 1$$, then the value of $$\theta$$ is
    Solution
    We have, $$(cos \theta+ i\, sin \theta) (cos \,2\theta + i \,sin 2\theta) ...$$
    $$(cos \,n\theta + i \,sin\, n\theta) = 1$$
    $$\therefore cos (\theta + 2\theta + 3\theta + .... + n\theta)+ i\, sin (\theta + 2\theta + 3\theta + ......... + n\theta) = 1$$
    $$\Rightarrow cos\dfrac{n\,n+1}{2}\theta+i\,sin\dfrac{n\,n+1}{2}\theta=1$$
    On comparing the coefficients of real and imaginary parts on both sides; we get
    $$cos\dfrac{n\,(n+1)}{2}\theta=1$$
    And $$sin\,\dfrac{n(n+1)}{2}\theta=0$$
    $$\therefore \dfrac{n\,n+1}{2}\therefore = 2\,m\pi$$
    $$\Rightarrow \theta = \dfrac{4\,m\pi}{n\,(n+1)}$$
  • Question 10
    1 / -0
    What is the product of the complex numbers $$\left( -3i+4 \right) $$ and $$\left( 3i+4 \right) $$?
    Solution
    Consider the product of the complex numbers as shown below:
    $$(-3i+4)(3i+4)=(-3i)(3i)-3i(4)+4(3i)+4(4)$$
    $$=-9i^2-12i+12i+16$$
    $$=-9(-1)+16=9+16$$
    $$=25$$
    Hence, option C is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now