Self Studies

Complex Numbers and Quadratic Equations Test 41

Result Self Studies

Complex Numbers and Quadratic Equations Test 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Add and express in the form of a complex number $$a+bi$$
    $$(2+3i)+(-4+5i)-\dfrac {(9-3i)}{3}$$
    Solution
    Adding the given expression as follows:
    $$(2+3i)+(-4+5i)-\dfrac {(9-3i)}{3}$$
    $$=(2+3i)+(-4+5i)-(3-i)$$
    $$=2+3i-4+5i-3+i$$
    $$=-5+9i$$

  • Question 2
    1 / -0
    If $$\alpha $$ and $$\beta$$ are two different complex numbers with $$|\beta|=1$$, then $$\left | \dfrac{\beta -\alpha}{1-\bar{\alpha }\beta } \right |$$ is equal to.
    Solution
    Let $$t =  \left|\cfrac { \beta -\alpha  }{ 1-\overline { \alpha  } \beta  } \right|$$ 
    Multiply the numerator and denominator with  $$\overline { \beta  } $$
    $$\Rightarrow t = \left|\cfrac { 1-\alpha \overline { \beta  }  }{ \overline { \beta  } -\overline { \alpha  }  } \right|  =  \left|\cfrac { \overline { 1- \alpha \overline { \beta  }   }  }{ \overline { \overline{\beta} -\overline{\alpha}  }  } \right|  =  \left|\cfrac { 1-\overline { \alpha  } \beta  }{ \beta -\alpha  } \right|=\cfrac{1}{t}$$ 
    $$\Rightarrow {t}^{2} = 1$$
    $$\Rightarrow t = 1$$ 
  • Question 3
    1 / -0
    If $$z_ 1 = 2 \sqrt 2 (1 + i)$$ and $$z = 1 + i \sqrt 3$$, then $$z_1^2 z_2^3$$ is equal to
    Solution
    Given, $$z_1=2\sqrt 2(1+i), z_2=1+i\sqrt 3$$
    Therefore, $$z_1^2=8(1+i)^2$$
    $$=8(1+2i-1)$$
    $$=16i$$
    and $$z_2^3=(1+i\sqrt 3)^3$$
    $$=1+3\sqrt3i-9-3\sqrt3i$$
    $$=-8$$
    Thus, $$z_1^2z_2^3=-8(16i)$$ $$=-128i$$
  • Question 4
    1 / -0
    Evaluate in standard form: $$\dfrac {(2-3i)}{(2-2i)}$$, where $${i}^{2}=-1$$.
    Solution
    Consider $$\dfrac {(2-3i)}{(2-2i)}$$
    Rationalise and solve considering that $$i^2=-1$$ as shown below:
    $$\Rightarrow \dfrac { 2-3i }{ 2-2i } \times \dfrac { 2+2i }{ 2+2i } =\dfrac { 4+4i-6i-{ 6i }^{ 2 } }{ 4-{ 4i }^{ 2 } }$$
    $$ =\dfrac { 4-2i+6 }{ 4+4 } $$
    $$=\dfrac { -2i+10 }{ 8 } $$
    $$=\dfrac { -i }{ 4 } +\dfrac { 5 }{ 4 }$$ 
  • Question 5
    1 / -0
    Express in the form of a complex number $$a+bi$$
    $$-(7-i)(-4-2i)(2-i)$$
    Solution
    Multiplying the given expression as follows:
    $$-[(7-i)(-4-2i)(2-i)]$$
    $$=-[(-28-14i+4i+2i^2)(2-i)]$$
    $$=-[(-28-10i-2)(2-i)]$$
    $$=-[(-30-10i)(2-i)]$$
    $$=-[-60+30i-20i+10i^2]$$
    $$=-[-60-10+10i]$$
    $$=-[-70+10i]$$
    $$=70-10i$$

  • Question 6
    1 / -0
    If $$z$$ is a complex number such that $$|z|\geq 2$$ then the minimum value of $$\left |z + \dfrac {1}{2}\right |$$ is
    Solution
    $$\left| z \right| \ge 2$$ is the region on or out side the circle whose center is $$\left( 0,0 \right)$$  and radius is $$2$$.

    Minimum $$\left| z+\dfrac { 1 }{ 2 }  \right|$$  is distance of $$z$$ which lie on circle $$\left| z \right| =2$$ from $$\left( -\dfrac { 1 }{ 2 } ,0 \right)$$

    Thus minimum $$\left| z+\dfrac { 1 }{ 2 }  \right|  =$$ Distance between $$\left( -\dfrac { 1 }{ 2 } ,0 \right)$$  to $$\left( 0,0 \right)$$ 

    $$= \sqrt { { \left( -\dfrac { 1 }{ 2 } +2 \right)  }^{ 2 }{ +\left( 0-0 \right)  }^{ 2 } } $$

    $$=\sqrt { \left( -\dfrac { 1 }{ 2 } +2 \right) ^{ 2 } } $$

    Apply radical rule $$\sqrt [ n ]{ a^{ n } } =a,$$ assuming $$a\ge \: 0$$

    $$=-\dfrac { 1 }{ 2 } +2$$

    $$=\dfrac { 2 }{ 1 } -\dfrac { 1 }{ 2 } $$

    $$=\dfrac { 2\cdot \: 2 }{ 2 } -\dfrac { 1 }{ 2 } $$

    $$=\dfrac { 2\cdot \: 2-1 }{ 2 } $$

    $$=\dfrac { 3 }{ 2 }$$

    Hence, option B is correct.

  • Question 7
    1 / -0
    What is $${ i }^{ 1000 }+{ i }^{ 1001 }+{ i }^{ 1002 }+{ i }^{ 1003 }$$ equal to (where $$i=\sqrt { -1 } $$)?
    Solution
    $$i^{1000} + i^{100} + i^{1002} + i^{1003}$$
    $$i^{2} = -1, i^{3} = -1, i^{4} = 1$$
    $$i^{1000} = (i^{4})^{250} = 1\ i^{1002} = i^{2} - i^{1000} = -1$$
    $$i^{1001} = i\cdot i^{1000} = i\ i^{1003} = i^{3}\cdot i^{1000} = -i$$
    $$\therefore i^{1000} + i^{1001} + i^{1002} + i^{1003} = 1 - 1 + i - i = 0$$
  • Question 8
    1 / -0
    A complex number z is said to be unimodular if $$|z| =1. $$. Suppose $$z_1$$ and $$z_2$$ are complex numbers such that $$\frac{z_1-2z_2}{2-z_1\overline {z}_2}$$ is unimolecolar and $$z_2$$ is not unimodular. Then the point $$z_1$$ lies on a:
    Solution

  • Question 9
    1 / -0
    Let $$z_1$$ = 18 + 83i, $$z_2$$ = 18 + 39i, ana $$z_3 $$= 78 + 99i. where i = $$\sqrt-1$$. Let z be a unique comlpex number with the properties that $$\dfrac{z_3 - z_1}{z_2 - z_1}$$ $$\cdot$$ $$\dfrac{z - z_2}{z - z_3}$$ is a real number and the imaginary part of the size z is the greatest possible.
    Solution
    Using the property that 

    if $$\dfrac{z_3-z_1}{z_2-z_1}.\dfrac{z-z_2}{z-z_3}$$is a real number then the four points are concyclic i.e. are present on a circle

    since it is told the imaginary part is maximum so,it the top point of the circle
    so we take the perpendicular bisector of any two line and take its intersection.
    As shown in the figure,

    Equation of perpendicular bisector of $$z_1z_2$$
    $$y=61$$

    Equation of perpendicular bisector of $$z_3z_2$$
    $$y+x=117$$

    Solving the equation we get,
    $$x=56$$

    So, $$Re(z)=56$$

  • Question 10
    1 / -0
    If $$z=\sqrt{20i-21}+\sqrt{21+20i}$$, then the principal value of arg 'z' can be 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now