Self Studies

Permutations and Combinations Test 10

Result Self Studies

Permutations and Combinations Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The maximum number of points of intersection of five lines and four circles is
    Solution
    Two circles intersect at two distinct points. Two straight lines intersect at one point.
    One circle and one straight line intersect at two distinct points.
    Then the total numbers of points of intersections are as follows:
    Number of ways of selection
    Points of intersection
    Two straight lines: $$^5C_2$$
    $$^5C_2\times 1=10$$
    Two circle: $$^4C_2$$
    $$^4C_2\times 2=12$$
    One line and one circle: $$^5C_1\times ^4C_1$$
    $$^5C_1\times ^4C_1\times 2=40$$
    Total
     $$= 62$$

  • Question 2
    1 / -0
    From a group of persons the number of ways of selecting 5 persons is equal to that of 8 persons. The number of persons in the group is
    Solution
    we know, number of ways of selecting r persons from n persons =$$^{n}\textrm{C}_{r}$$
    i.e. $$^{n}\textrm{C}_{5}$$= $$^{n}\textrm{C}_{8}$$
    but, $$^{n}\textrm{C}_{r}$$=$$^{n}\textrm{C}_{n-r}$$
    => $$n=r+(n-r)$$
    => $$n=5+8$$
    => $$n=13$$

  • Question 3
    1 / -0
    If $$^nC_{r-1} = 36, \space ^nC_r = 84$$ and $$^nC_{r+1} = 126,$$ then find $$r$$.
    Solution
    Here
    $$\displaystyle\frac{^nC_r}{^nC_{r-1}} = \displaystyle\frac{84}{36}$$
    $$\Rightarrow

    \displaystyle\frac{n-r+1}{r} = \displaystyle\frac{7}{3} \quad\quad

    \left(\because \quad \displaystyle\frac{^nC_r}{^nC_{r-1}}

    = \displaystyle\frac{n-r+1}{r} \right)$$
    $$\Rightarrow 3n-3r+3 = 7r$$
    $$\Rightarrow 10r - 3n = 3 \quad\quad (i)$$
    And
    $$\displaystyle\frac{^nC_{r+1}}{^nC_r} =

    \displaystyle\frac{n- (r+1) +1}{(r+1)}

    = \displaystyle\frac{126}{84} \quad\quad \left(\because

    \quad \displaystyle\frac{^nC_r}{^nC_{r-1}}

    = \displaystyle\frac{n-r+1}{r} \right)$$
    $$\Rightarrow \displaystyle\frac{n-r}{r+1} = \displaystyle\frac{3}{2}$$
    $$\Rightarrow 2n - 2r = 3r + 3$$
    $$\Rightarrow 5r - 2n = -3$$
    $$\Rightarrow 10r-4n = -6 \quad\quad ...(ii)$$
    Subtracting $$(ii)$$ from $$(i)$$, we get $$n = 9$$
    from $$(i),\quad 10r - 27 = 3$$
    $$\Rightarrow 10r = 30$$
    $$\therefore \quad\quad r = 3$$.
  • Question 4
    1 / -0
    If $$\displaystyle ^nC_{r-1}=56$$, $$\displaystyle ^nC_r=28$$ and $$\displaystyle ^nC_{r+1}=8$$ then r is equal to
    Solution
    From the given information, $$\dfrac{\:^{n}C_{r-1}}{\:^{n}C_{r}}=2$$
    $$\Rightarrow \dfrac{n!r!(n-r)!}{(r-1)!(n-(r-1))!.n!}=2$$

    $$\Rightarrow \dfrac{r}{n+1-r}=2$$

    $$\Rightarrow r=2n+2-2r$$
    $$\Rightarrow 3r=2n+2$$...(i)

    Also, $$\dfrac{\:^{n}C_{r}}{\:^{n}C_{r+1}}=\dfrac{7}{2}$$
    $$\Rightarrow \dfrac{n!(n-(r+1))!.(r+1)!}{n!.r!.(n-r)!}=\dfrac{7}{2}$$

    $$\Rightarrow \dfrac{r+1}{n-r}=\dfrac{7}{2}$$

    $$\Rightarrow 2r+2=7n-7r$$
    $$\Rightarrow 9r=7n-2$$ ...(ii)
    $$\Rightarrow n=8$$
    Hence,
    $$\Rightarrow 9r=56-2$$
    $$\Rightarrow 9r=54$$
    $$\Rightarrow r=6$$
  • Question 5
    1 / -0
    The number of numbers of 9 different nonzero digits such that all the digits in the first four places are less than the digit in the middle and all the digits in the last four places are greater than that in the middle is 
    Solution


    $$\textbf{Step 1: Given conditions and finding the middle digit.}$$
                  $$\text{Given:}$$
                  $$\text{Numbers of 9 different nonzero digits with following conditions}$$
                  $$\text{Condition 1:Digits in first four places should be less than the middle digit.}$$
                  $$\text{Condition 2:Digits in last four places should be greater than the middle digit.}$$
                  $$\text{According to the conditions the middle digit will be 5; first four digits will be 1,2,3,4 and the last four}$$
                  $$\text{digits will be 6,7,8,9.}$$
                  
    $$\textbf{Step 2: Permutations of first 4 digits and last 4 digits.}$$
                  $$\text{The first four digits can be permutated with 1,2,3,4}$$
                  $$\text{Hence the number of Permutations will be}$$ $${4!}$$
                  $$\text{The last four digits can be permutated with 6,7,8,9}$$
                  $$\text{Hence the number of Permutations will be}$$ $${4!}$$
                  
    $$\textbf{Step 3: Final calculation.}$$
                   $$\text{Therefore the number of numbers of 9 different nonzero digits is}$$
                  $$\Rightarrow \text{4!.4!}$$                      
                  $$\Rightarrow {(4!)^2}$$

    $$\textbf{Hence option B is correct.}$$
  • Question 6
    1 / -0
    In a packet there are m different books, n different pens and p different pencils. The number of selections of at least one article of each type from the packet is
    Solution
    Since each of $$(m+n+p)$$ items has 2 choices of being selected or not selected; hence total no. of ways of selecting items $$=2\times 2\times 2\times 2\times .................(m+n+p)times={ 2 }^{ m+n+p }$$
    but one case in this will be when none of the items is selected.
    Therefore, no. of ways of selecting at least one item of each type 
    $$(2^{m}-1)(2^{n}-1)(2^{p}-1)$$
    Hence, option 'D' is correct.
  • Question 7
    1 / -0
    The value of $$\displaystyle \sum_{r= 0}^{n}$$ $$\displaystyle ^{n+r}C_{r}$$ is equal to
    Solution
    The given series can be written as 
    $$^{ n }{ C }_{ 0 }+^{ n+1 }{ C }_{ 1 }+^{ n+2 }{ C }_{ 2 }+.....+^{ 2n }{ C }_{ n }\\ =\left\{ ^{ n+1 }{ C }_{ 0 }+^{ n+1 }{ C }_{ 1 } \right\} +^{ n+2 }{ C }_{ 2 }+.....+^{ 2n }{ C }_{ n }\\ =\left\{ ^{ n+2 }{ C }_{ 1 }+^{ n+2 }{ C }_{ 2 } \right\} +.....+^{ 2n }{ C }_{ n }\\ =\left\{ ^{ n+3 }{ C }_{ 2 }+^{ n+3 }{ C }_{ 3 } \right\} +^{ n+4 }{ C }_{ 4 }+....+^{ 2n }{ C }_{ n }\\ =^{ n+4 }{ C }_{ 3 }+^{ n+4 }{ C }_{ 4 }+....+^{ 2n }{ C }_{ n }$$
    Proceeding the same way finally we get the sum as 
    $$^{ 2n+1 }{ C }_{ n }$$
  • Question 8
    1 / -0
    For $$\displaystyle 2\leq r\leq n,\binom{n}{r}+2\binom{n}{r-1}+\binom{n}{r-2}$$ is equal to
    Solution
    $$\:^{n}C_{r}+\:^{n}C_{r-1}+\:^{n}C_{r-1}+\:^{n}C_{r-2}$$
    $$=(\:^{n}C_{r}+\:^{n}C_{r-1})+(\:^{n}C_{r-1}+\:^{n}C_{r-2})$$
    $$=\:^{n+1}C_{r}+\:^{n+1}C_{r-1}$$
    $$=\:^{n+2}C_{r}$$
    This comes from the property that
    $$\:^{n}C_{r-1}+\:^{n}C_{r}=\:^{n+1}C_{r}$$

  • Question 9
    1 / -0
    The number of 5-digit even numbers that can be made with the digits 0,1,2 and 3 is
    Solution
    Here even number must end with $$0$$ or $$2$$

    Since $$5$$ digit number is to be formed with $${0,1,2,3}$$ hence it is obvious that repetition is allowed.

    $$\left< { a }|{ b }|{ c }|{ d }|{ e } \right> $$ 
    here "$$a$$" has $$3$$ options $${1,2,3}$$ ,$$b,c,d$$ has $$4$$ options 

    $${0,1,2,3}$$ and "$$e$$" has $$2$$ options $${0} $$ and $${2}$$
    Number of $$5$$ digit numbers = $$3\times 4\times 4\times 4\times 2=384$$
    Hence, option 'A' is correct.
  • Question 10
    1 / -0
    $$\displaystyle ^{n}C_{r+1}+^{n}C_{r-1}+2\times ^{n}C_{r}$$ is equal to
    Solution
    $$\:^{n}C_{r+1}+\:^{n}C_{r-1}+\:^{n}C_{r}+\:^{n}C_{r}$$
    $$=(\:^{n}C_{r+1}+\:^{n}C_{r})+(\:^{n}C_{r}+\:^{n}C_{r-1})$$
    $$=\:^{n+1}C_{r+1}+\:^{n+1}C_{r}$$
    $$=\:^{n+2}C_{r+1}$$
    This comes from the property that
    $$\:^{n}C_{r-1}+\:^{n}C_{r}=\:^{n+1}C_{r}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now