Self Studies

Permutations and Combinations Test 12

Result Self Studies

Permutations and Combinations Test 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \begin{pmatrix} 47 \\ 4 \end{pmatrix}$$+$$\displaystyle \sum_{j=1}^{5}$$ $$\displaystyle \begin{pmatrix} 52-j \\ 3 \end{pmatrix}$$=$$\displaystyle \begin{pmatrix} x \\ y \end{pmatrix}$$ then $$\displaystyle \frac{x}{y}$$ =
    Solution
    Expanding, we get 
    $$\:^{47}C_{4}+\:^{47}C_{3}+\:^{48}C_{3}+\:^{49}C_{3}+\:^{50}C_{3}+\:^{51}C_{3}+\:^{52}C_{3}$$
    Applying 
    $$\:^{n}C_{r}+\:^{n}C_{r+1}=\:^{n+1}C_{r+1}$$, we get 
    $$[\:^{47}C_{4}+\:^{47}C_{3}+\:^{48}C_{3}+\:^{49}C_{3}+\:^{50}C_{3}+\:^{51}C_{3}]$$
    $$=+\:^{48}C_{4}+\:^{48}C_{3}+\:^{49}C_{3}+\:^{50}C_{3}+\:^{51}C_{3}]$$
    :
    :
    $$\:^{51}C_{3}+\:^{51}C_{4}$$
    $$=\:^{52}C_{4}$$.
    Hence $$x=52$$ and $$y=4$$
    Hence, $$\dfrac {x}{y}=\dfrac{52}{4}$$
    $$=13$$
  • Question 2
    1 / -0
    The mean of the values $$0, 1, 2, \cdots n$$, having corresponding weights $$^nC_0, ^nC_1, \cdots ^nC_n,$$ respectively is
    Solution
    Required A.M $$=\cfrac{\sum x_if_i}{\sum f_i} = \cfrac{0.^nC_0+^nC_1+2. 

    ^nC_2+3. ^nC_3+..............+n. ^nC_n}{^nC_0+^nC_1+ ^nC_2+

    ^nC_3+.......+ ^nC_n} = \mu $$ (say)
    Now consider $$(1+x)^n =^nC_0+^nC_1 x+ ^nC_2 x^2+.........+^nC_n x^n ....(1)$$
    Differentiating both side (1) w.r.t $$x$$
    $$n(1+x)^{n-1} =^nC_1 +2. ^nC_2 x+.........+n. ^nC_n x^{n-1} ....(2)$$
    Now putting $$x=1$$ in (1) and (2) we get,
    $$^nC_0+^nC_1 + ^nC_2 +.........+^nC_n =2^n$$
    and $$ ^nC_1 +2. ^nC_2 +.........+n. ^nC_n  = n. 2^{n-1}$$
    $$\therefore \mu = \cfrac{n. 2^{n-1}}{2^n}=\cfrac{n}{2}$$
  • Question 3
    1 / -0
    An $$n-$$ digit number is a positive number with exactly $$n$$ digits. Nine hundred distinct n−digit numbers are to be formed using only the three digits 2,5 and 7. The smallest value of $$n$$ for which this is possible is
    Solution
    Using $$2,5$$ and $$7$$ with repetition each place of $$n$$ digit number can be chosen in $$3$$ ways.
    Hence, total number of $$n-$$digit numbers $$=3\times 3\times 3...n$$ times $$={3}^{n}.$$
    According to given condition $${ 3 }^{ n }\ge 900\Rightarrow { 3 }^{ n-2 }\ge 100$$
    $$\therefore n-2\ge 5\Rightarrow n\ge 7$$
  • Question 4
    1 / -0
    If $$^{20}C_{r\, +\, 2}\, =\, ^{20}C_{2r\, -\, 3}\,$$, find  $$\, ^{12}C_r$$.
    Solution
    $$^{20}C_{r+2} = ^{20}C_{2r-3}$$ 

    $$\Rightarrow  r+2 = 2r-3$$, or$$ r+2=20-2r+3$$  [ Using $$^nC_x=^nC_y=> x=y\ or x=n-y$$ ]

    $$\Rightarrow r = 5 \ or \  r=7 \therefore   ^{12}C_5 = ^{12}C_7=792$$
  • Question 5
    1 / -0

    Directions For Questions

    S = {0, 2, 4, 6, 8}. A natural number is said to be divisible by 2 if the digit at the unit place is an even number.The number is divisible by 5, if the number at the unit place is 0 or 5. If four numbers are selected from S and a four digit number ABCD is formed.
    On the basis of above information, answer the following questions

    ...view full instructions

    The number of such numbers which are divisible by two and five (all digits are not different) is
    Solution
    The numbers which are divisible by 2 and 5 are the multiples of 10.
    Hence the ending digit has to be 0.
    However the starting digit cannot be 0.
    Now 
    _ _ _ 0.
    Hence number of ways of filling the first place will be 4, the second place will be 5 and 3rd place will be 5, since repetition of digits are allowed.
    Hence total number of the numbers which are divisible by 2 and 5 are 
    $$4\times 5\times 5$$
    $$=100$$ 
  • Question 6
    1 / -0
    A set contains $$(2n + 1)$$ elements. The number of subsets of the set which contain at most n elements is
    Solution
    Let $$N$$ = the number of subsets of the set which contain at most n elements 

    $$=^{ 2n+1 }{ { C }_{ 0 } }+^{ 2n+1 }{ { C }_{ 1 } }+^{ 2n+1 }{ { C }_{ 2 } }+...+^{ 2n+1 }{ { C }_{ n } }$$

    $$ 2N=2\left( ^{ 2n+1 }{ { C }_{ 0 }+^{ 2n+1 }{ { C }_{ 1 }+^{ 2n+1 }{ C_{ 2 }+...+^{ 2n+1 }{ { C }_{ n } } } } } \right) $$

    $$ =\left( ^{ 2n+1 }{ { C }_{ 0 }+^{ 2n+1 }{ { C }_{ 2n+1 } } } \right) +\left( ^{ 2n+1 }{ { C }_{ 1 }+ }^{ 2n+1 }{ { C }_{ 2n } } \right) +...+\left( ^{ 2n+`1 }{ { C }_{ n }+^{ 2n+1 }{ { C }_{ n+1 } } } \right) $$........................$$ \left( \because ^{ n }{ { C }_{ r }= }^{ n }{ C }_{ n-r } \right) $$

    $$ =^{ 2n+1 }{ C }_{ 0 }+^{ 2n+1 }{ C }_{ 1 }+^{ 2n+1 }{ { C }_{ 2 } }+...+^{ 2n+1 }{ { C }_{ 2n+1 } }$$

    $$ { =2 }^{ 2n+1 }$$

    $$ \Rightarrow 2N={ 2 }^{ 2n+1 }$$

    $$ \Rightarrow N={ 2 }^{ 2n }$$
  • Question 7
    1 / -0
    If $$'n'$$ is an integer between $$0$$ and $$21$$, then the minimum value of $$n!\left( 21-n \right) !$$ is
    Solution
    To find the minimum value of $$\displaystyle n!\left( 21-n \right) !=21!\frac { n!\left( 21-n \right) ! }{ 21! } =21!\frac { 1 }{ ^{ 21 }{ { C }_{ n } } } =\frac { 21! }{ ^{ 21 }{ { C }_{ n } } } $$
    For minimum value, $$\displaystyle ^{ 21 }{ { C }_{ n } }$$ is maximum.
    Maximum value of $$\displaystyle ^{ 21 }{ { C }_{ n } }=\frac { ^{ 21 }{ { C }_{ 21-1 } } }{ 2 } =^{ 21 }{ { C }_{ 10 } }$$
    $$\therefore$$ Minimum value $$\displaystyle =\frac { 21! }{ ^{ 21 }{ { C }_{ 10 } } } =\frac { 21! }{ 21! } \times 10!11!=10!11!$$  
  • Question 8
    1 / -0
    If $$^8C_r = ^8C_{r+2}$$, then the value of $$^rC_2$$ is:
    Solution
    Since $$ { C }_{ r }^{ n }={ C }_{ n-r }^{ n }$$
    $$ \Longrightarrow r=8-(r+2)$$
    Hence $$r=3 $$
    $$^3C_2=3$$
  • Question 9
    1 / -0
    $$^{50}C_{11}+^{50}C_{12}+^{51}C_{13}-^{52}C_{13}=$$
    Solution
    We know that 
    $$\:^{n}C_{r}+\:^{n}C_{r+1}=\:^{n+1}C_{r+1}$$
    Application of the above formula gives us
    $$\:^{50}C_{11}+\:^{50}C_{12}$$

    $$=\:^{51}C_{12}$$

    $$\rightarrow \:^{51}C_{12}+\:^{51}C_{13}$$

    $$=\:^{52}C_{13}$$

    $$\rightarrow \:^{52}C_{13}-\:^{52}C_{13}$$

    $$=0$$.
  • Question 10
    1 / -0
    The value of  $$^{95}C_4+\displaystyle \sum_{j=1}^5 {\;}^{100-j}C_3$$ is
    Solution
    $$^{95}C_4+\displaystyle \sum_{j=1}^5 {\;}^{100-j}C_3$$
    $$= ^{95}C_4 + ^{99}C_3 + ^{98}C_3 + ^{97}C_3 + ^{96}C_3 + ^{95}C_3$$
    $$= (^{95}C_3 + ^{95}C_4) + ^{96}C_3 + ^{97}C_3 + ^{98}C_3 + ^{99}C_3$$
    $$= (^{96}C_4 + ^{96}C_3) + ^{97}C_3 + ^{98}C_3 + ^{99}C_3$$      ($$\because ^{n}C_r+^{n}C_{r-1}=\ ^{n+1}C_r$$)
    $$= (^{97}C_4 + ^{97}C_3) + ^{98}C_3 + ^{99}C_3$$                ($$\because ^{n}C_r+^{n}C_{r-1}=\ ^{n+1}C_r$$)
    $$= (^{98}C_4 + ^{98}C_3) + ^{99}C_3 $$                             ($$\because ^{n}C_r+^{n}C_{r-1}=\ ^{n+1}C_r$$)
    $$= ^{99}C_4 + ^{99}C_3 = ^{100}C_4$$                               ($$\because ^{n}C_r+^{n}C_{r-1}=\ ^{n+1}C_r$$)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now