Self Studies

Permutations and Combinations Test 13

Result Self Studies

Permutations and Combinations Test 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$^nC_3 + ^nC_4 > ^{n+1}C_3$$, then
    Solution
    $$\:^{n}C_{3}+\:^{n}C_{4}$$
    $$=\:^{n+1}C_{4}$$
    $$=\:^{n+1}C_{n-3}$$
    Now 
    $$\:^{n+1}C_{n-3}>\:^{n+1}C_{3}$$
    Hence
    $$n-3>3$$
    $$n>6$$.
  • Question 2
    1 / -0
    If $$4.^nC_6 = 33.^{n-3}C_3$$ then $$n$$ is equal to
    Solution
    $$4.\:^{n}C_{6}=33.(\:^{n-3}C_{3})$$
    $$4.(\dfrac{n!}{(n-6)!.6!})=33.(\dfrac{(n-3)!}{3!.(n-6)!}$$
    $$4(n(n-1)(n-2))=33(4\times5\times6)$$
    $$n(n-1)(n-2)=11\times3\times5\times6=11.10.9$$

    Hence the real root that we get is 
    $$n=11$$.
    Hence $$n=11$$.
  • Question 3
    1 / -0
    If $$2\times$$ $$^nC_5 = 9\times$$ $$^{n-2}C_5$$, then the value of n will be:
    Solution
    Given, $$2(\:^{n}C_{5})=9(\:^{n-2}C_{5})$$
    $$2.\dfrac{n!}{5!.(n-5)!}=9.\dfrac{(n-2)!}{(n-7)!.5!}$$

    $$\dfrac{2(n-1)(n)}{(n-6)(n-5)}=9$$
    $$2n^{2}-2n=9(n^{2}-11n+30)$$
    $$7n^{2}-97n+270=0$$
    Hence $$n=10$$ and $$n=\dfrac{27}{7}$$
    Since $$n\epsilon N$$.
    Hence $$n=10$$.
  • Question 4
    1 / -0
    $$\displaystyle \sum_{r=0}^m {\;}^{n+r}C_n=$$
    Solution
    Given $$\sum _{ r=0 }^{ m } {^{ n+r }C_{ n }}$$
    $$=^{ n }C_{ n }+^{ n+1 }C_{ n }+^{ n+2 }C_{ n }+^{ n+3 }C_{ n }.....^{ n+m }C_{ n }$$

    $$=^{ n+1 }C_{ n+1 }+^{ n+1 }C_{ n }+^{ n+2 }C_{ n }+^{ n+3 }C_{ n }.....^{ n+m }C_{ n }$$          ($$\because ^{ n }C_{ n }=^{ n+1 }C_{ n+1 }$$)

    $$=^{ n+2 }C_{ n+1 }+^{ n+2 }C_{ n }+^{ n+3 }C_{ n }.....^{ n+m }C_{ n }$$
                 ($$\because ^nC_r+^nC_{r-1}=^{n+1}C_r$$)

    $$=^{ n+3 }C_{ n+1 }+^{ n+3 }C_{ n }+......^{ n+m }C_{ n }$$
    Continuing this , 
    $$=^{ n+m }C_{ n+1 }+^{ n+m }C_{ n }$$
    $$=^{ n+m+1 }C_{ n+1 }$$

  • Question 5
    1 / -0
    If $$^{15}C_{3r}=^{15}C_{r+3}$$, then the value of r is:
    Solution
    Since, $$^nC_r = ^nC_{n-r}$$
    Either $$ \Longrightarrow 3r=r+3$$  or $$ 3r=15-(r+3)$$
    Hence, $$ r=\dfrac { 3 }{ 2 } $$ or $$r=3$$
    Since  r is an integer, therefore $$r=3 $$
  • Question 6
    1 / -0
    Let $$A=(x|x$$ is a prime number and $$x<300$$ > the number of different rational numbers, whose numerator and denominator belong to $$A$$ is:
    Solution
    Set A contains 10 elements. 2 different numbers for numerator and denominator from these can be obtained in $$10\times 9=90$$ ways and each permutation will form a unique rational number different from one. In addition, one will be formed when numerator and denominator are same. So required number of numbers $$90+1=91$$
  • Question 7
    1 / -0
    If n and r are two positive integers such that $$n\geq r$$, then $$^nC_{r+1} + ^nC_r =$$
    Solution
    The value of $$\:^{n}C_{r+1}+\:^{n}C_{r}$$

    $$=\dfrac{n!}{(n-(r+1))!(r+1)!}+\dfrac{n!}{(n-r)!.r!}$$

    $$=\dfrac{n!}{r!.(n-(r+1))!}[\dfrac{1}{r+1}+\dfrac{1}{n-r}]$$

    $$=\dfrac{n!}{r!.(n-(r+1))!}[\dfrac{n+1}{(r+1)(n-r)}]$$

    $$=\dfrac{(n+1)!}{(n-r)!(r+1)!}$$

    $$=\:^{n+1}C_{r+1}$$.
  • Question 8
    1 / -0
    If $$(^{15}C_r + ^{15}C_{r-1}) (^{15}C_{15-r} + ^{15}C_{16-r}) = (^{16}C_{13})^2$$, then the value of $$r$$ is
    Solution
    $$(^{ 15 }C_{ r }+^{ 15 }C_{ r-1 })(^{ 15 }C_{ 15-r }+^{ 15 }C_{ 16-r })=(^{ 16 }C_{ 13 })^{ 2 }$$
    $$^{ 16 }C_{ r }(^{ 15 }C_{ r }+^{ 15 }C_{ r-1 })=(^{ 16 }C_{ 13 })^{ 2 }$$     ($$\because ^nC_r+^nC_{r-1}=^{n+1}C_r$$)
    $$^{ 16 }C_{ r }(^{ 16 }C_{ r })=(^{ 16 }C_{ 3 })^{ 2 }$$    ($$\because ^nC_r=^nC_{n-r}$$)
    $$(^{ 16 }C_{ r })^{ 2 }=(^{ 16 }C_{ 3 })^{ 2 }$$
    $$\Rightarrow r=3$$
  • Question 9
    1 / -0
    In a game called 'odd man out', $$ m (m > 2)$$ persons toss a coin to determine who will buy refreshment for the entire group. A person who gets an outcome different from that of the rest of the members of the group is called the odd man out. The probability that there is a loser in any game is
    Solution
    Let us represent the person as $${ P }_{ 1 }$$ , $${ P }_{ 2 }$$ , $${ P }_{ 3 }$$ , $${ P  m }.$$
    For each person we have 2 outcome,
    So, total outcomes $$= { 2 }^{ m }$$
    Favorable outcomes:
    $$1.$$  One gets tail rest $$\rightarrow$$ Head
    $$2.$$ One get head test $$\rightarrow$$ Tail
    No. of ways $$m\times 1$$  ($$m=$$ because in people).
    Also for second condition we have $$m$$ ways.
    Total favorable ways $$=\dfrac { 2m }{ { 20 }^{ m } } ={ m }/{ { 2 }^{ m-1 } }$$
    Hence, answer is $${ m }/{ { 2 }^{ m-1 } }.$$
  • Question 10
    1 / -0
    Three players play a total of $$9$$ games. In each game, one person wins and the other two lose; the winner gets $$2$$ points and the losers lose $$1$$ each. The number of ways in which they can play all the $$9$$ games and finish each with a zero score is
    Solution
    Each player need to win $$3$$ matches and lose $$6$$ matches to get a zero score.
    Out of $$9$$ games $$3$$ should be selected by first player(games which he will win)$$=^9C_3$$ 
    Out of $$6$$ games 3 should be selected by second player $$={}^6C_3$$ 
    Out of $$3$$ games $$3$$ should be selected by third player $$={}^3C_3$$ 
    Hence the answer is $$={}^9C_3\times^6C_3\times^3C_3=1680$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now