Self Studies

Permutations and Combinations Test 14

Result Self Studies

Permutations and Combinations Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$ S= \left\{1,2,3,.......n\right\} $$ and $$ A =\left\{(a, b) \left. \right | 1 \geq a, b \geq n\right\} = S \times S\: $$. A subset $$ B$$ of $$A $$ is said to be a good subset if $$ (x, x) \in B$$ for every $$x \in S.$$ Then the number of good subsets of $$A$$ is
    Solution
    The number of element in $$A$$= $$n\times{n}$$ 
    The number of element of A having  $$(x,x)$$ for all $$x\in S$$ = $$n$$
    Total remaining element = $$(n\times{n})-n$$ 
    Since Subset $$B$$ must have $$(x,x)$$ for all $$x\in S$$ = $$n$$ so it may have any number of remaining element. 
    Number of ways of selecting elements from remaining element = $${2}^{(n\times{n})-n}$$
  • Question 2
    1 / -0
    If $$(1+x)^n=C_0+C_1x+C_2x^2+ ......+C_nx^n,$$ then the value of $$C_0 + 2C_1+ 3 C_2 + ...... (n + 1) C_n$$ will be
    Solution
    $$C_0 + 2 C_1 + 3C_2 + ..... + (n+1)C_n$$
    $$= ^nc_0 + 2^nC_1 + 3^nC_2 + ..... + (n + 1) ^nC_n$$
    $$(^n C_0 + ^nC_1 + ^nC_2 + ..... + ^nC_n) + (^nC_1 + 2 ^nC_2 + 3^nC_3 + ..... n. ^nC_n)$$
    $$= \displaystyle (1 +1)^n + n + n (n - 1) + 3 \frac{n (n -1)(n - 2)}{3} + .... + n$$
    $$= 2^n + n \displaystyle \left [ 1 + (n - 1) + \frac{(n - 1) (n - 2)}{2} + ...... + 1 \right ]$$
    $$= 2^n + n [1 + 1]^{n - 1} = 2^n + n.2^{n -1}= (n + 2). 2^{n - 1}$$
  • Question 3
    1 / -0
    Forty teams play a tournament. Each of them plays with every other team just once. Each game result is a win for one team. If each team has a $$50\%$$ chance of winnings each game, the number of ways such that at the end of the tournament, every team has won a different number of games is:
  • Question 4
    1 / -0
    The sum of the series $$\displaystyle \sum_{r=0}^{10} {\;}^{20}C_r$$ is
    Solution
    Simplifying the expression we get 
    $$\:^{20}C_{0}+\:^{20}C_{1}+\:^{20}C_{2}+...\:^{20}C_{10}$$ ...(i)
    Now 
    $$(1+x)^{20}=\:^{20}C_{0}+\:^{20}C_{1}x+\:^{20}C_{2}x^{2}+...\:^{20}C_{20}x^{n}$$
    Substituting x=1, we get 
    $$2^{20}=\:^{20}C_{0}+\:^{20}C_{1}+\:^{20}C_{2}+...\:^{20}C_{20}$$
    Now 
    $$\:^{20}C_{r}=\:^{20}C_{n-r}$$
    Hence 
    $$2^{20}=2[\:^{20}C_{0}+\:^{20}C_{1}+\:^{20}C_{2}+...\:^{20}C_{9}]+\:^{20}C_{10}$$
    Now 
    $$2^{19}-\dfrac{\:^{20}C_{10}}{2}=\:^{20}C_{0}+\:^{20}C_{1}+\:^{20}C_{2}+...\:^{20}C_{9}$$
    Adding $$\:^{20}C_{10}$$ on both sides we get 
    $$2^{19}-\dfrac{\:^{20}C_{10}}{2}+\:^{20}C_{10}=\:^{20}C_{0}+\:^{20}C_{1}+\:^{20}C_{2}+...\:^{20}C_{9}+\:^{20}C_{10}$$
    $$2^{19}+\dfrac{\:^{20}C_{10}}{2}=\:^{20}C_{0}+\:^{20}C_{1}+\:^{20}C_{2}+...\:^{20}C_{9}+\:^{20}C_{10}$$
  • Question 5
    1 / -0
    There are 8 buses running from Kota to Jaipur and 10 buses running from Jaipur to Delhi. In how many ways a Person can travel from Kota to Delhi via Jaipur by bus?
    Solution
    Let $$E_1$$ be the event of travelling from Kota to Jaipur & $$E_2$$ be the event of travelling from Jaipur to Delhi by the person.
     $$E_1$$ can happen in 8 ways and $$E_2$$ can happen in 10 ways. 
    Since both the events $$E_1$$ and $$E_2$$ are to be happened 12 in order, simultaneously,the number of ways $$=8\times10=80$$
  • Question 6
    1 / -0
    If $$\displaystyle^{n}P_{r}=  360$$  and  $$^ {n}C_{r}=15$$ then find the value of r
    Solution
    $$^nP_r = \dfrac { n! }{ (n-r)! } = 360 $$-- (1)

    $$^nC_r = \dfrac { n! }{ (r!)(n-r)! } = 15 $$  -- (2)

    Dividing eqn 1 by 2, we get
    $$ => r ! = \dfrac {360}{15} = 24 $$
    $$ => r ! = 4 \times 2 \times 3 \times 1 = 4 ! $$

    So, $$ r = 4 $$

  • Question 7
    1 / -0
    The value of $$\displaystyle ^{ 19 }C_{ 18 }+^{ 19 }C_{ 17 }$$
    Solution
    $$\displaystyle ^{ n }C_{ r }=\frac { n! }{ \left( n-r \right) !r! } $$
    $$\displaystyle ^{ 19 }C_{ 18 }+^{ 19 }C_{ 17 }=\frac { 19! }{ 18! } +\frac { 19! }{ 17!2! } $$
    $$\displaystyle =19+\frac { 19\times 18 }{ 2 } $$
    $$\displaystyle =19+171$$
    $$\displaystyle =190$$
  • Question 8
    1 / -0
    IF$$\displaystyle ^{n}C_{r}=^{n}P_{r}$$  then r can be____
    Solution
    Given,
    $$ ^nC_r=^nP_r$$
    $$ => \dfrac { n! }{ (r!)(n-r)! } = \dfrac { n! }{ (n-r)! } $$
    $$ => r ! = 1 $$
    $$ => r = 0  $$ or $$ 1 $$ as $$ 0 ! = 1; 1 ! = 1 $$
  • Question 9
    1 / -0
    Different calenders for the month of February are made so as to serve for all the coming years. The number of such calenders is
    Solution

    It has to perform two jobs

    1- select number of days in February i.e 28 or 29

    2-select first day of month in 7 ways

    Total way to perform both jobs=2*7=14

  • Question 10
    1 / -0
    Find the value of $$\displaystyle ^{10}C_{10}$$
    Solution
    We have $$ ^nC_r = \dfrac { n! }{ (r!)(n-r)! } $$

    So, $$ ^{10}C_{10} = \dfrac { 10! }{ (10!) (10-10)! } =\dfrac { 1! }{ 0! } = 1 $$   Since $$ 1 ! = 0 ! = 1 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now