Self Studies

Permutations and Combinations Test 16

Result Self Studies

Permutations and Combinations Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A vehicle registration number consists of $$2$$ letters of English alphabet followed by $$4$$ digits, where the first digit is not zero. Then, the total number of vehicles with distinct registration numbers is
    Solution
    The total number of arrangements of $$2$$ letters of English alphabet
    $$= 26\times 26$$
    The total number of arrangements of $$4$$ digits number in which first digit is not zero
    $$= 9\times 10\times 10\times 10$$
    $$\therefore$$ The total number of vehicles with distinct registration number
    $$= 26\times 26\times 9\times 10\times 10\times 10$$
    $$= 26^{2} \times 9\times 10^{3}$$
  • Question 2
    1 / -0
    If $$\displaystyle ^{ 16 }{ C }_{ r }=^{ 16 }{ C }_{ r+1 }$$, then the value of $$\displaystyle ^{ r }{ P }_{ r-3 }$$ is
    $$\displaystyle $$
    Solution
    $$\displaystyle ^{ 16 }{ C }_{ r }=^{ 16 }{ C }_{ r+1 }$$

    $$\displaystyle \Rightarrow \quad ^{ 16 }{ C }_{ 16-r }=^{ 16 }{ C }_{ r+1 }\quad \left( \because \quad ^{ n }{ C }_{ n-r } \right) $$

    $$\displaystyle \Rightarrow \quad 16-r=r+1$$
    $$\displaystyle \Rightarrow \quad 2r=15$$

    $$\displaystyle \Rightarrow \quad r=7.5$$

    Which is not possible, since r should be an integer.
  • Question 3
    1 / -0
    If $$X, Y, Z, D, E$$ and $$F$$ are $$6$$ distinct points on the circumference of a circle, find the number of different chords which can be drawn using any $$2$$ of the $$6$$ points.
    Solution
    To draw a chord we choose any two points from given 6 points .
    So
    The answer required is $$^6C_2=15$$
  • Question 4
    1 / -0
    If $$_{  }^{ n }{ { P }_{ r } }=30240$$ and $$_{  }^{ n }{ { C }_{ r } }=252$$, then the ordered pair $$\left( n,r \right) $$ is equal to
    Solution
    Given that, $$_{  }^{ n }{ { P }_{ r } }=30240$$ and $$_{  }^{ n }{ { C }_{ r } }=252$$
    $$\Rightarrow \dfrac { n! }{ \left( n-r \right) ! } =30240$$ and $$\dfrac { n! }{ \left( n-r \right) !r! } =252$$
    $$\Rightarrow r!=\dfrac { 30240 }{ 252 } =120$$
    $$\Rightarrow r=5$$
    $$\therefore \dfrac { n! }{ \left( n-5 \right) ! } =30240$$
    $$\Rightarrow n\left( n-1 \right) \left( n-2 \right) \left( n-3 \right) \left( n-4 \right) =30240$$
    $$\Rightarrow n\left( n-1 \right) \left( n-2 \right) \left( n-3 \right) \left( n-4 \right) =10\left( 10-1 \right) \left( 10-2 \right) \left( 10-3 \right) \left( 10-4 \right) $$
    $$\Rightarrow n=10$$
    Hence, required ordered pair is $$\left( 10,5 \right) $$
  • Question 5
    1 / -0
    The value of $$\dfrac {(n + 2)! - (n + 1)!}{n!} $$ is:
    Solution
    The value of $$\dfrac { (n+2)!-(n+1)! }{ n! } $$
    $$=\dfrac { (n+2)(n+1)n!-(n+1)n! }{ n! } $$
    $$=\dfrac { (n+1)(n!)(n+2-1) }{ n! } $$
    $$=\dfrac { (n+1)(n+1) }{ 1 } $$
    $$={ (n+1) }^{ 2 }$$
  • Question 6
    1 / -0
    If $$^{n}C_{12} = ^{n}C_{6}$$, then $$^{n}C_{2}$$is equal to:
    Solution
    Given $$^{n}C_{12} = ^{n}C_{6}$$
    or $$^{n}C_{n - 12} = ^{n}C_{6}$$
    $$\Rightarrow n - 12 = 6$$
    $$\Rightarrow n = 18$$
    $$\therefore ^{n}C_{2} = ^{18}C_{2} = \dfrac {18\times 17}{2\times 1}$$
    $$= 153$$
  • Question 7
    1 / -0
    $$^n C_{r-1}\, =\, 330,\, ^nC_r\, =\, 462,\, ^nC_{r+1}\, =\, 462\, \Rightarrow\, r\, =$$
    Solution
    $$^nC_{r-1}=330$$,   $$^nC_r=^nC_{r+1}=462$$

    $$\Rightarrow \dfrac{n!}{(r!)(\,n-r)!}=\dfrac{n!}{(r+1)!( \, n-(r+1))!}$$

    $$\Rightarrow (r+1)!(n-(r+1))!=(r!)\,(n-r)!$$

    $$\Rightarrow r+1=n-r$$

    $$n=2r+1$$

    $$\dfrac{n-r+1}{r}=\dfrac{462}{330}$$

    $$= 330n-330r+330=462r$$

    $$=330n+330=792r$$

    $$=(n+1)330=792r$$

    $$=(2r+2)330=792r$$

    $$=660r+660=792r$$

    $$=660=132r$$

    $$\Rightarrow r=\dfrac{660}{132}$$

    $$\rightarrow r=5$$
  • Question 8
    1 / -0
    If $$a=99^{50}+100^{50}$$ and $$b=101^{50}$$, then :
    Solution
    $$a = 99^{50} + 100^{50}$$
    $$b = 101^{50} = (100 + 1)^{50}$$
    $$b = ^{100} C_{0} 100^{50} + ^{100}C_{1} 100^{49} + ... + ^{100}C_{100} 100^{0} = 2 \times {100}^{50} + ^{100}C_2 100^{48} + .... + ^{100}C_{100} 100^{0}$$

    $$b = 100^{50} + 100^{50} + ^{100}C_2 100^{48} + .... + ^{100}C_{100} 100^{0}$$
    $$b = a - 99^{50} +100^{50} + ^{100}C_2 100^{48} + .... + ^{100}C_{100} 100^{0}$$
    $$\because \left(100^{50} - 99^{50}\right) > 1$$ and $$^{100}C_2 100^{48} + .... + ^{100}C_{100} 100^{0} >1$$

    Hence, $$b > a $$
  • Question 9
    1 / -0
    If n is an integer with $$0\le n \le 11$$ then the minimum value of $$n!(11-n)!$$ is attained when a value of n = 
    Solution
    Let $$y=n!(11-n)!$$
    Consider $$x= ^{11}C_n=\dfrac{11!}{n!(11-n)!}$$
    For maximum value of $$x$$ we must have $$n=6$$ or $$n=5$$
    Thus $$x_{max}=^{11}C_6=\dfrac{11!}{5!6!}=\dfrac{11!}{y_{min}}$$
    $$\Rightarrow y_{min}=5!6!$$ i.e. $$n=6$$ or $$n=5$$
  • Question 10
    1 / -0
    The number of words that can be formed out of the letters of the word "ARTICLE" so that the vowels occupy even places is
    Solution
    There are total $$7$$ words then there will be $$7$$ positions out of $$3$$ are even place like $$2,4,6$$ and we have $$3$$ vowels $$A,I,E$$ 

    The vowels can be arranged in the even place in $$3!$$ places and the rest can be arranged in $$4!$$

    $$\therefore$$ Required number of ways $$3!\times4!=144$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now