Self Studies

Permutations and Combinations Test 21

Result Self Studies

Permutations and Combinations Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Write down and simplify:
    The $$5^{th}$$ term of $${ \left( \cfrac { { x }^{ \frac { 3 }{ 2 }  } }{ { a }^{ \frac { 1 }{ 2 }  } } -\cfrac { { y }^{ \frac { 5 }{ 2 }  } }{ { b }^{ \frac { 3 }{ 2 }  } }  \right)  }^{ 8 }$$.
    Solution
    The $$r^{th}$$ term in expansion of $$(p+q)^n$$ is given by $$^nC_{r-1}p^{n+1-r}q^{r-1}$$

    $$\therefore$$  in the given expression

    $$p=\cfrac{x^\frac{3}{2}}{a^\frac{1}{2}}, \ q=-\cfrac{y^\frac{5}{2}}{b^\frac{3}{2}}, \ r=5 \ \And \ n=8$$

    $$\therefore$$ the $$5^{th}$$ term will be $$^8C_4 { \left( \cfrac{x^\frac{3}{2}}{a^\frac{1}{2}}\right)^4 {\left( - \cfrac{y^\frac{5}{2}}{b^\frac{3}{2}} \right)}^4} = \cfrac{70x^6y^{10}}{a^2b^6}$$
  • Question 2
    1 / -0
    The number of positive integer satisfying the inequality $$^{n + 1}C_{n} - {}^{n + 1}C_{n - 1} \leq 100$$ is
    Solution
    $$^{n + 1}C_{n } - {}^{n + 1}C_{n - 1} \leq 100$$
    $$\Rightarrow {}^{n + 1}C_{3} - {}^{n + 1}C_{2} \leq 100$$
    $$\Rightarrow \dfrac {(n + 1)n(n - 1)}{6} - \dfrac {(n + 1)n}{2} \leq 100$$
    $$\Rightarrow (n + 1)n(n - 1) - 3n(n + 1)\leq 600$$
    $$\Rightarrow (n + 1) n(n - 4)\leq 600$$
    The values of $$n$$ satisfying this inequality are
    $$2, 3, 4, 5, 6, 7, 8, 9$$.
  • Question 3
    1 / -0
    If PQRS is a convex quadrilateral with 3, 4, 5 and 6 points marked on side PQ, QR, RS and PS respectively. Then, the number of triangles with vertices on different sides is
    Solution
    Total number of triangles $$=$$ Number of triangles with vertices on sides $$(\text{PQ, QR, RS + QR, RS, PS + RS, PS, PQ + PS, PQ, QR})$$
    $$= {}^3C_1 \times {}^4C_1 \times {}^5C_1 + {}^4C_1 \times {}^5C_1 \times {}^6C_1 + {}^5C_1 \times {}^6C_1 \times {}^3 C_1 + {}^6C_1 \times {}^3C_1 \times {}^4C_1$$
    $$= 60 + 120 + 90 + 72 = 342$$
  • Question 4
    1 / -0
    The number of triangles that can be formed by choosing the vertices from a set of $$12$$ points of which $$7$$ points lie on a line is
    Solution
    We can choose any three points out of 12 points and then subtract the no. of ways choosing three points out of 7 points which are in straight line.

    $$\therefore$$Total no. of triangles$$= ^{12}C_3-^7C_3=185$$
  • Question 5
    1 / -0
    Find the $$4^{th}$$ term of $${ \left( 9x-\cfrac { 1 }{ 3\sqrt { x }  }  \right)  }^{ 18 }$$.
    Solution
    We know that the $$r^{th}$$ term in expansion of $$(a+b)^n$$ is given by $$^nC_{r-1}a^{n+1-r}b^{r-1}$$
    Here $$a=9x, \ n=18 \  \And \ b=-\cfrac{1}{3\sqrt{x}}$$
    $$\therefore$$ the fourth term in expansion of $$\left (9x-\cfrac{1}{3\sqrt{x}}\right)^{18}$$ is $$^{18}C_{12} {x}^{6}\left (-\cfrac{1}{3\sqrt{x}}\right)^{12} =18564$$
  • Question 6
    1 / -0
    The arithmetic mean of $${ _{  }^{ n }{ C } }_{ 0 },{ _{  }^{ n }{ C } }_{ 1 },....{ _{  }^{ n }{ C } }_{ n }\quad $$, is
    Solution
    Clearly,
    Required mean $$=\cfrac { { _{  }^{ n }{ C } }_{ 0 }+{ _{  }^{ n }{ C } }_{ 1 }+...+{ _{  }^{ n }{ C } }_{ n } }{ n } =\cfrac { { 2 }^{ n } }{ n } $$
  • Question 7
    1 / -0
    If $$^{n}C_{r - 1} = 36$$ and $$^{n}C_{r} = 84$$, then
    Solution
    Given, $$^{n}C_{r - 1} = 36$$
    and $$^{n}C_{r} = 84$$
    Now, $$\dfrac {^{n}C_{r - 1}}{^{n}C_{r}} = \dfrac {36}{84}$$
    $$\Rightarrow \dfrac {r}{n - r + 1} = \dfrac {36}{84} = \dfrac {3}{7}$$
    $$\Rightarrow 7r = 3n - 3r + 3$$
    $$\Rightarrow 10r = 3n + 3$$
    $$\Rightarrow 10r - 3n - 3 = 0$$.
  • Question 8
    1 / -0
    If $$\displaystyle \sum _{ k=0 }^{ 18 }{ \cfrac { k }{ { _{  }^{ 18 }{ C } }_{ k } }  } =a\sum _{ k=0 }^{ 18 }{ \cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ k } }  } $$, then the value of $$a$$ is
    Solution
    Given $$\displaystyle \sum _{ k=0 }^{ 18 }{ \cfrac { k }{ { _{  }^{ 18 }{ C } }_{ k } }  } =a\sum _{ k=0 }^{ 18 }{ \cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ k } }  } $$
    $$LHS= \displaystyle\sum _{ k=0 }^{ 18 }{ \cfrac { k }{ { _{  }^{ 18 }{ C } }_{ k } }  } =\left[ 0+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 1 } } +\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 2 } } +...+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 18 } }  \right] ...(i)\quad $$
    $$RHS=a\displaystyle \sum _{ k=0 }^{ 18 }{ \cfrac { k }{ { _{  }^{ 18 }{ C } }_{ k } }  } =a\left[ 1+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 1 } } +\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 2 } } +...+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 18 } }  \right] ...(ii)\quad $$
    From Eq(i) and (ii)
    $$18\left( 1+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 1 } } +\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 2 } } +...+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 18 } }  \right) +\cfrac { 9 }{ { _{  }^{ 18 }{ C } }_{ 9 } } $$
    $$=2a\left( 1+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 1 } } +\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 2 } } +...+\cfrac { 1 }{ { _{  }^{ 18 }{ C } }_{ 18 } }  \right) +\cfrac { a }{ { _{  }^{ 18 }{ C } }_{ 9 } } $$
    $$\therefore$$ $$2a=18$$
    $$\Rightarrow$$ $$a=9$$
  • Question 9
    1 / -0
    There are $$10$$ persons including $$3$$ ladies. A committee of 4 persons including atleast one lady is to be formed. The number of ways of forming such a committee is :
    Solution
    A committee pf $$4$$ persons can be formed in following ways:
    (i) $$3$$ persons and one ladies 
    $$ =^7C_3 \times ^3C_1 = 35 \times 3 = 105 $$
    (ii) $$2$$ persons and two ladies 
    $$ = ^7C_2 \times  ^3C_2 = 21 \times 3 = 63 $$
    (iii) $$1$$ persons and three ladies 
    $$ =  ^7C_1 \times  ^3C_3 = 7 \times 1 = 7 $$
    Therefore, total number of ways 
    $$ = 105 + 63 + 7 = 175 $$
  • Question 10
    1 / -0
    The number of ways of distributing $$8$$ identical balls in $$3$$ distinct boxes, so that none of the boxes is empty is
    Solution
    The total number of ways of dividing $$8$$ identical balls in $$3$$ distinct boxes, so that one of the boxes is empty, is $$^{ 8-1 }{ { C }_{ 3-1 } }$$.
    That is further equal to $$^{ 7 }{ { C }_{ 2 } }=\dfrac { 7! }{ 2!5! } =21$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now