Self Studies

Permutations and Combinations Test 23

Result Self Studies

Permutations and Combinations Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$p> q$$, the number of ways of $$p$$ men and $$q$$ women can be seated in a row so that no two women sit together is
    Solution
    Arrangement of $$p$$ men in a row $$=p!$$
    $$\therefore$$ Required number of ways $$={ p! }^{ p+1 }{ P }_{ q }=\cfrac { p!(p+1)! }{ \left( p-q+1 \right) ! } $$
  • Question 2
    1 / -0
    Total number of arrangements of the letters of the word SUCCESS such that both $$C's$$ are together and no two $$S's$$ are together is
    Solution
    As $$CC$$ are together and no two $$'S'$$ are together
    $$\therefore$$ Consider $$CC$$ as single object. $$U, CC, E$$ can be arranged in $$3!$$ ways
    $$\times U\times CC \times E \times$$
    Now three $$'S'$$ are to the placed in four available place as $$^{4}c_{3}$$ ways
    $$\therefore$$ Required number of ways are $$3! \times ^{4}C_{3} = 24$$.
    Hence choice (b) is correct.
  • Question 3
    1 / -0
    Out of $$15$$ persons $$10$$ can speak Hindi and $$8$$ can speak English. If two persons are chosen at random, then the probability that one person speaks Hindi only and the other speaks both Hindi and English is
    Solution

    $$n(H) = 10$$ {people who speak hindi}

    $$n(E) = 8$$ {People who speak English}

    $$n(E\cup H) = 15$$ (total)

    $$n (E \cap H) = 10 + 8 – 15 = 3$$ (Speaking both)

    People who speak hindi only $$= 10 – 3 = 7$$

    Total ways of selecting $$2$$ people $$= 15C_{2} = 105$$

    Favourable ways $$= 7C_{1} \times 3C_{1} = 21$$

    Probability of occurrence $$= \dfrac {21}{105} = \dfrac {1}{5}$$

  • Question 4
    1 / -0
    A telephone number $$d_1d_2d_3d_4d_5d_6d_7$$ is called memorable if the prefix sequence $$d_1d_2d_3$$ is exactly the same as either of the sequence $$d_4d_5d_6$$ or $$d_5d_6d_7$$(or possibly both). If each $$d_1\epsilon\{x|0\leq x\leq 9, x\epsilon W\}$$, then number of distinct memorable telephone number is(are).
    Solution

  • Question 5
    1 / -0
    $$\sum _{ r=0 }^{ n-1 }{ \cfrac { { _{  }^{ n }{ C } }_{ r } }{ { _{  }^{ n }{ C } }_{ r }+{ _{  }^{ n }{ C } }_{ r+1 } }  } $$ is equal to
    Solution
    $$\sum_{r=0}^{n-1}$$$$\dfrac{^nC_r}{^nC_r+^nC_{r+1}}$$

    =$$\sum_{r=0}^{n-1}$$$$\dfrac{^nC_r}{^{n+1}C_{r+1}}$$  ----------(because $$^nC_r + ^nC_{r-1}=^{n+1}C_r$$)

    =$$\sum_{r=0}^{n-1}\dfrac{^nC_r}{\dfrac{(n+1)}{(r+1)}^nC_r}$$

    =$$\sum_{r=0}^{n-1}\dfrac{r+1}{n+1}$$

    =$$\dfrac{n(n+1)}{2(n+1)}$$

    =$$\dfrac{n}{2}$$

    hence option $$'A'$$ is correct.




  • Question 6
    1 / -0
    A man $$x$$ has $$7$$ friends, $$4$$ of them are ladies and $$3$$ are men. His wife $$Y$$ also has $$7$$ friends, $$3$$ of them are ladies and $$4$$ are men. Assume $$X$$ and $$Y$$ have no common friends. Then, the total number of ways in which $$X$$ and $$Y$$ together can throw a party inviting $$3$$ ladies and $$3$$ men , so that $$3$$ friends of each of $$X$$ and $$Y$$ are in this party, is 
    Solution
    Case 1: One of them invites all three the same gender.
    ie, $$N=(^4C_3\ ^4C_3)+(^3C_3\ ^3C_3)=4^2+1^2=17$$

    Case 2: One of them invites 1 male and 2 females$$\Rightarrow$$The other invites 2 males and 1 female.
    ie, $$N=(^4C_2\ ^3C_1\ ^4C_2\ ^3C_1)+(^4C_1\ ^3C_2\ ^3C_2\ ^4C_1)=18^2+12^2=468 $$

    So, Total Possible ways$$=468+17=485$$

    ie, Option A is correct answer.
  • Question 7
    1 / -0
    The sum $$^{20}C_0+^{20}C_1+^{20}C_2+..... +^{20}C_{10}$$ is equal to
    Solution
    Let 
           $$S={}^{ 20 }{ { C }_{ 0 } }+{}^{ 20 }{ { C }_{ 1 } }+{}^{ 20 }{ { C }_{ 2 } }+.......+{}^{ 20 }{ { C }_{ 10 } }$$
    $$\Rightarrow 2S=\left( {}^{ 20 }{ { C }_{ 0 } }+{}^{ 20 }{ { C }_{ 0 } } \right) +\left( {}^{ 20 }{ { C }_{ 1 } }+{}^{ 20 }{ { C }_{ 1 } } \right) +\left( {}^{ 20 }{ { C }_{ 2 }+ }{}^{ 20 }{ { C }_{ 2 } } \right) +.......+\left( {}^{ 20 }{ { C }_{ 9 } }+{}^{ 20 }{ { C }_{ 9 } } \right) +\left( {}^{ 20 }{ { C }_{ 10 } }+{}^{ 20 }{ { C }_{ 10 } } \right) $$
    $$\Rightarrow 2S-{}^{ 20 }{ { C }_{ 10 } }=\left( {}^{ 20 }{ { C }_{ 0 } }+{}^{ 20 }{ { C }_{ 20 } } \right) +\left( {}^{ 20 }{ { C }_{ 1 } }+{}^{ 20 }{ { C }_{ 19 } } \right) +\left( {}^{ 20 }{ { C }_{ 2 }+ }{}^{ 20 }{ { C }_{ 18 } } \right) +.......+\left( {}^{ 20 }{ { C }_{ 9 } }+{}^{ 20 }{ { C }_{ 11 } } \right) +{}^{ 20 }{ { C }_{ 10 } }$$
                                                                                                                                                       (Using $$ _{  }{}^{ n }{ { C }_{ r } }=_{  }{}^{ n }{ { C }_{ n-r } }$$) 
    $$\Rightarrow 2S-{}^{ 20 }{ { C }_{ 10 } }={}^{ 20 }{ { C }_{ 0 } }+{}^{ 20 }{ { C }_{ 1 } }+{}^{ 20 }{ { C }_{ 2 }+ }.......+{}^{ 20 }{ { C }_{ 19 } }+{}^{ 20 }{ { C }_{ 20 } }$$
    $$\Rightarrow 2S-{}^{ 20 }{ { C }_{ 10 } }={ 2 }{}^{ 20 }$$                                                                      (Using $${}^{ n }{ { C }_{ 0 } }+{}^{ n }{ { C }_{ 1 } }+{}^{ n }{ { C }_{ 2 } }+.......+{}^{ n }{ { C }_{ n } }={ 2 }{}^{ n }$$)
    $$\Rightarrow S=\dfrac { { 2 }{}^{ 20 }+{}^{ 20 }{ { C }_{ 10 } } }{ 2 } $$
    $$\Rightarrow S={ 2 }{}^{ 19 }+\dfrac { 1 }{ 2 } .\dfrac { 20! }{ { (10!) }{}^{ 2 } } $$

    Hence, Option B is correct.
  • Question 8
    1 / -0
    The value of $$\begin{pmatrix} 30 \\ 0 \end{pmatrix}\begin{pmatrix} 30 \\ 10 \end{pmatrix}-\begin{pmatrix} 30 \\ 1 \end{pmatrix}\begin{pmatrix} 30 \\ 11 \end{pmatrix}+\begin{pmatrix} 30 \\ 2 \end{pmatrix}\begin{pmatrix} 30 \\ 12 \end{pmatrix}-...+\begin{pmatrix} 30 \\ 20 \end{pmatrix}\begin{pmatrix} 30 \\ 30 \end{pmatrix}$$ is where $$\begin{pmatrix} n \\ r \end{pmatrix}={ _{  }^{ n }{ C } }_{ r }$$
    Solution
    $$\displaystyle^{30}C_{0}\displaystyle^{30}C_{10}-\displaystyle^{30}C_{1}\displaystyle^{30}C_{11}+........+\displaystyle^{30}C_{20}\displaystyle^{30}C_{30}$$
    WKT
    $$\Rightarrow (x+1)^{30}=\displaystyle^{30}C_{0}+x\left(^{30}C_{1}\right)+x^2\left(^{30}C_{2}\right)+.........+x^{30}\left(^{30}C_{30}\right)$$
    $$\Rightarrow (x-1)^{30}=x^{30}\left({^{30}C_{0}}\right)-x^{29}\left({^{30}C_{1}}\right)+......+^{30}C_{30}$$
    Multiply the above $$2$$ equations $$\xi$$ comparing $$x^{20}$$ co-efficient.
    $$\Rightarrow (x+1)^{30}(x-1)^{30}=\left(x^2-1\right)^{30}$$
    $$\Rightarrow T_{10+1}=^{30}C_{10}x^{2(10)}\times 1^{20}={^{30}C_{10}}x^{20}$$
    $$\Rightarrow {^{30}C_{10}}={^{30}C_{0}}{^{30}C_{10}}-{^{30}C_{1}}{^{30}C_{11}}+.......+{^{30}C_{20}}{^{30}C_{30}}$$
    $$\therefore$$ Required $$={^{30}C_{10}}$$
    Hence, the answer is $${^{30}C_{10}}.$$

  • Question 9
    1 / -0
    Let $${ T }_{ n }$$ denotes the number of triangles which can be formed by using the vertices of a regular polygon of n sides. If $${ T }_{ n+1 }\ -\ { T }_{ n }=21$$, then $$n$$ is equal to
    Solution
    Number of triangle that can be formed using polygon of $$n$$ sided $$={}^{ n }{ C }_{3}$$

    According to question, 

    $${}^{ n+1 }{ C }_{3}-{ }^{ n }{ C }_{3}=21$$

    $$\dfrac { (n+1)(n)(n-1) }{ 6 } -\dfrac { n(n-1)(n-2) }{ 6 } =21$$

    $$\Rightarrow \dfrac { 3(n)(n-1) }{ 6 } =21$$ 

    $$\Rightarrow (n)(n-1)=42$$

    Solving this equation we get $$n=-6,7$$

    But $$n$$ can't be negative

    Hence, $$n=7$$.
  • Question 10
    1 / -0
    If $$15! =2^{\alpha}\cdot 3^{\beta}\cdot 5^{\gamma}\cdot 7^{\delta}\cdot 11^{\theta}\cdot 13^{\Phi}$$, then the value of expression $$\alpha -\beta +\gamma -\delta +\theta -\Phi$$ is
    Solution
    $$15!=1\times 2\times 3\times 4 \times 5\times 6\times 7\times 8\times 9\times 10\times 11\times 12\times 13\times 14\times 15$$

    $$15!=2\times 3\times 2^2 \times 5\times 3\times 2 \times 7\times 2^3\times 3^2\times 2\times 5\times 11\times 3\times 2^2 \times 13\times 2\times 7 \times 3\times 5$$

    $$15!=2^{11}\times 3^6\times 5^3\times 7^ 2\times 11\times 13 $$

    $$\implies \alpha =11$$

    $$\implies \beta =6$$

    $$\implies \gamma=3$$

    $$\implies \delta =2$$

    $$\implies \theta =1$$

    $$\implies \Phi=1$$

    $$\alpha-\beta+\gamma-\delta+\theta-\Phi=11-6+3-2+1-1=6$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now