Let $$S_1$$ be the set of $$n$$ identical objects and $$S_2$$ be the set of the remaining $$n$$ different objects.
Number of ways to select $$r$$ objects from $$S_1=1$$ since all objects in $$S_1$$ are identical.
Number of ways to select $$r$$ objects from $$S_2= ^nC_{r}$$.
Total number of ways to select $$n$$ objects =
$$\bullet$$$$n$$ objects from $$S_2$$ and $$0$$ object from $$S_1$$
Number of ways $$= ^nC_{n}$$
$$\bullet$$$$n-1$$ objects from $$S_2$$ and $$1$$ object from $$S_1$$
Number of ways $$ = ^nC_{n-1}\times 1=^nC_{n-1}$$
$$\bullet$$ $$n-2$$ objects from $$S_2$$ and $$2$$ object from $$S_1$$
Number of ways $$ = ^nC_{n-2}\times 1=^nC_{n-2}$$
$$\bullet$$ $$n-3$$ objects from $$S_2$$ and $$3$$ object from $$S_1$$
Number of ways $$ = ^nC_{n-3}\times 1=^nC_{n-3}$$
$$.$$
$$.$$
$$.$$
$$.$$
$$\bullet$$ $$2$$ objects from $$S_2$$ and $$n-2$$ object from $$S_1$$
Number of ways $$ = ^nC_{2}\times 1=^nC_{2}$$
$$\bullet$$ $$1$$ objects from $$S_2$$ and $$n-1$$ object from $$S_1$$
Number of ways $$ = ^nC_{1}\times 1=^nC_{1}$$
$$\bullet$$ $$0$$ objects from $$S_1$$ and $$n$$ object from $$S_1$$
Number of ways $$ = ^nC_{0}\times 1=^nC_{0}$$
$$\therefore$$ Total number of ways $$= ^nC_{n}+^nC_{n-1}+^nC_{n-2}+^nC_{n-3}+....+^nC_{2}+^nC_{1}+^nC_{0}=2^n$$
So, the answer is option (A).