Self Studies

Permutations and Combinations Test 25

Result Self Studies

Permutations and Combinations Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\dfrac { ^{ n }{ P }_{ r-1 } }{ a } =\dfrac { ^{ n }{ P }_{ r } }{ b } =\dfrac { ^{ n }{ P }_{ r+1 } }{ c } $$, then which of the following holds good:
    Solution
    $$\dfrac{^{n} {P}_{r-1}}{a} = \dfrac{^{n}{P}_{r}}{b} = \dfrac{^{n}{P}_{r+1}}{c} $$ 

    $$\implies \dfrac{n!}{(n - r+ 1)!a} = \dfrac{n!}{(n-r)!b} = \dfrac{n!}{(n-r-1)!c} $$

    $$\implies \dfrac{n!}{(n - r+ 1)!a} = \dfrac{n!}{(n-r)(n-r+1)!b} = \dfrac{n!}{(n-r-1)(n-r)(n-r+1)!c} $$

    $$\implies \dfrac{1}{a} = \dfrac{1}{(n-r)b} = \dfrac{1}{(n-r-1)(n-r)c} $$

    $$\implies n-r = \dfrac{a}{b}$$  and $$n-r-1 = \dfrac{b}{c}$$

    $$\implies n-r - 1 = \dfrac{a}{b} - 1 $$

    $$\implies \dfrac{b}{c} = \dfrac{a}{b} - 1$$

    $$\implies \dfrac{b}{c} - \dfrac{a}{b} = - 1$$

    $$\implies b^2 - ac = - bc $$

    $$\implies b^2 = ac - bc$$

    $$\therefore b^2 = c(a - b)$$ (Ans)


  • Question 2
    1 / -0
    If $$^nC_r : ^nC_{r + 1} : ^nC_{r + 2} = 3 : 4: 5$$, then the value of $$2n + 3r$$ is
    Solution

    $$\dfrac { { { n }_{ C } }_{ r } }{ { { n }_{ C } }_{ r+1 } } =\dfrac { 3 }{ 4 } $$


    $$ \dfrac { r+1 }{ n-r } =\dfrac { 3 }{ 4 } $$


    $$ \dfrac { { { n }_{ C } }_{ r+1 } }{ { { n }_{ C } }_{ r+2 } } =\dfrac { 4 }{ 5 } $$


    $$ \dfrac { r+2 }{ n-r-1 } =\dfrac { 4 }{ 5 } $$


    $$ On\quad solving\quad above\quad we\quad get\quad r=26,n=62$$


    $$ 2n+3r=238$$


    $$\dfrac { { { n }_{ C } }_{ r } }{ { { n }_{ C } }_{ r+1 } } =\dfrac { 3 }{ 4 } $$


    $$ \dfrac { r+1 }{ n-r } =\dfrac { 3 }{ 4 } $$


    $$ \dfrac { { { n }_{ C } }_{ r+1 } }{ { { n }_{ C } }_{ r+2 } } =\dfrac { 4 }{ 5 } $$


    $$ \dfrac { r+2 }{ n-r-1 } =\dfrac { 4 }{ 5 } $$


    $$ On\quad solving\quad above\quad we\quad get\quad r=26,n=62$$


    $$ 2n+3r=238$$$$ $$


  • Question 3
    1 / -0
    The number of permutations of the letters of the word $$HONOLULU$$ taken $$4$$ at a time is
    Solution
    $$H-1$$
    $$N-1$$
    $$O-2$$
    $$L-2$$
    $$U-2$$
    Number of permutation $$=\dfrac {n!}{r_1\times r_2\times....\times r_n} =\dfrac { 8! }{ { (2! })^{ 3 }4! } =210$$
  • Question 4
    1 / -0

    The total number of different combinations of one
    or more letters which can be made from the letter of the word MISSISSIPPI is,

    Solution
    We have 1M, 4I ,4S , 2P
    Therefore total number of selection of one or more letters=(1+1)(4+1)(4+1)(2+1)-1=149
  • Question 5
    1 / -0
    Find the remainder when $$105!$$ is divided by $$214.$$ 
  • Question 6
    1 / -0
    We wish to select $$6$$ persons from $$8$$, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
    Solution
    When A is not Taken then B may be Chosen (No of remaining Candidates $$=8-1=7$$)
    No.of selections $$={}^7C_6=7$$

    When A is taken B must be chosen (No of remaining Candidates $$=6$$ and number of remaining selections $$=4$$)
    No. of selections $$={}^6C_4=15$$

    Total no. of ways $$=15+7=22$$
  • Question 7
    1 / -0
    Number of arrangements of the letter $$HOLLYWOOD$$ in which all $$Os$$ are separated.
  • Question 8
    1 / -0
    $$\dfrac { { C }_{ 1 } }{ { C }_{ 0 } } +2\dfrac { { C }_{ 2 } }{ { C }_{ 1 } } +3\dfrac { { C }_{ 3 } }{ { C }_{ 2 } } +....+15\dfrac { { C }_{ 15 } }{ { C }_{ 14 } }$$ is equal to
    Solution
    $$\begin{array}{l} \frac { { { C_{ 1 } } } }{ { { C_{ 0 } } } } +\frac { { 2{ C_{ 2 } } } }{ { { C_{ 1 } } } } +\frac { { B{ C_{ 3 } } } }{ { { C_{ 2 } } } } ........15\frac { { { C_{ 13 } } } }{ { { C_{ 14 } } } }  \\ \frac { { { C_{ 1 } } } }{ { { C_{ 0 } } } } =4\,  \\ \frac { { 2{ C_{ 2 } } } }{ { { C_{ 1 } } } } =n-1 \\ \frac { { 15{ C_{ 15 } } } }{ { { C_{ 14 } } } } =1 \\ n+\left( { n-1 } \right) ....1 \\ =\frac { { 15\left( { 15+1 } \right)  } }{ 2 }  \\ =120 \end{array}$$
  • Question 9
    1 / -0
    How many committee of five persons with a chairperson can be selected from $$12$$ persons.
    Solution
    No of Persons $$=5+1$$(Chairperson)

    $$\therefore$$ No of committees that can be selected $$={}^{12}C_6=924$$
  • Question 10
    1 / -0
    The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet ?
    Solution
    $$2$$ vowels can be chosen in $$5{c}_{2}$$ ways. 
    $$2$$ consonants can be chosen in $$21{c}_{2}$$ ways. 
    $$4$$ letter can be arranged in $$4$$ ways.
    $$\therefore$$ The no of words containing $$2$$ vowels and $$2$$ consonants $$=5{c}_{2}\times 21{c}_{2}\times 4!=10\times 210\times 24=50400$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now