Self Studies

Permutations and Combinations Test 27

Result Self Studies

Permutations and Combinations Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the letters of the word "VARUN" are written in all possible ways and then are arranged as in a dictionary, then the rank of the word VARUN is?
    Solution

    $${\textbf{Step 1}}\;:\;{\mathbf{Finding}}\;{\mathbf{number}}\;{\mathbf{of}}\;{\mathbf{words}}\;{\mathbf{starting}}\;{\mathbf{with}}\;{\mathbf{the}}\;{\mathbf{alphabets}}\;{\mathbf{in}}\;{\mathbf{the}}\;{\mathbf{given}}\;{\mathbf{word}}$$

                       $${\text{No}}.{\text{ of words beginning with A }} = 4! = 4 \times 3 \times 2 = 24$$

                       $${\text{No}}.{\text{ of words beginning with N }} = 4! = 4 \times 3 \times 2 = 24$$

                       $${\text{No}}.{\text{ of words beginning with R }} = 4! = 4 \times 3 \times 2 = 24$$

                       $${\text{No}}.{\text{ of words beginning with U }} = 4! = 4 \times 3 \times 2 = 24$$

                       $${\text{So}},{\text{ in total }}96{\text{ words will be formed while beginning with letter A}},{\text{ N}},{\text{ R and U}}.$$

    $${\textbf{Step 2}}\;\;:\;{\mathbf{Finding}}\;{\mathbf{the}}\;{\mathbf{order}}\;{\mathbf{of}}\;{\mathbf{the}}\;{\mathbf{word}}$$

                       $${\text{Order of }} 97{\text { th word }} - {\text{ VANRU}}$$

                       $${\text{Order of }}98{\text{th word }} - {\text{ VANUR}}$$

                      $${\text{Order of }}99{\text{th word }} - {\text{ VARNU}}$$

                      $${\text{Order of }}100{\text{th word}} - {\text{ VARUN}}.$$

    $${\mathbf{Therefore}},\;{\mathbf{rank}}\;{\mathbf{of}}\;{\mathbf{word}}\;'{\mathbf{VARUN}}'\;{\textbf{is 100. Option C is correct.}}$$

  • Question 2
    1 / -0
    Garlands are formed using 6 red roses and 6 yellow roses of different sizes. The number of arrangements in garland which have red roses and yellow roses come alternately is
    Solution

  • Question 3
    1 / -0
    The value of  $$\sum\limits_{r = 0}^{10} {\left( {\matrix{   {10}  \cr    r  \cr } } \right)} \left( {\matrix{   {15}  \cr    {14 - r}  \cr } } \right)$$ is equal to
    Solution

  • Question 4
    1 / -0
    If $$f(x)=1-x+x^2-x^3+....-x^{15}+x^{16}+x^{17}$$, then the coefficient of $$x^2$$ in $$f(x-1)$$ is?
    Solution
    $$f\left( x \right) = 1 - \left( {x - 1} \right) + {\left( {x - 1} \right)^2} - {\left( {x - 1} \right)^3} + {\left( {x - 1} \right)^4}.... - {\left( {x - 1} \right)^{15}} + {\left( {x - 1} \right)^{16}} + {\left( {x - 1} \right)^{17}}$$
    The coefficient of $${x^2}$$ by using binomial expansion
    $$^2{c_0}{x^2}{ + ^3}{c_1}{x^2}{ + ^4}{c_2}{x^2}{ + ^5}{c_3}{x^2}{ + ^6}{c_4}{x^2}{ + ^7}{c_5}{x^2}{ + ^8}{c_6}{x^2}{ + ^9}{c_7}{x^2}$$
    $${ + ^{10}}{c_8}{x^2}{ - ^{11}}{c_9}{x^2}{ + ^{12}}{c_{10}}{x^2}{ - ^{13}}{c_{11}}{x^2}{ + ^{14}}{c_{12}}{x^2}{ - ^{15}}{c_{13}}{x^2}{ + ^{16}}{c_{14}}{x^2}{ - ^{17}}{c_{15}}{x^2}$$
    $$ \Rightarrow {x^2}\left( {1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136} \right)$$
    = 372 + 444 = 816
  • Question 5
    1 / -0
    The product of five consecutive numbers is always divisible by ?
    Solution
    Solution:
                               The product $$(n)$$ of any $$5$$ consecutive numbers will always be divisible by $$120$$ and its factors.
                                    $$n(n+1)(n+2)(n+3)(n+4)$$
                                     $$5\times 4\times 3\times 2=120$$
    Answer C:
  • Question 6
    1 / -0
    A person tries to form as many different parties as he can, out of his $$20$$ friends. Each party should consist of the same number. How many friends should be invited at a time? In how many of these parties would the same friends be found?
    Solution
    Let the person invite r number of friends at a time. Then, the number of parties is $$^{20}C_r$$, which is maximum when $$r=10$$. If a particular friend will be found in x parties, then x is the number of combinations out of $$20$$ in which this particular friend must be included. Therefore, we have to select $$9$$ more from $$19$$ remaining friends. Hence, $$x=$$ $$^{19}C_9$$=92378.
  • Question 7
    1 / -0
    Let $$(1+x)^n=C_0+C_1x+C_2x^2+....+C_nX^n$$.(where $$C_r=$$ $$^{n}C_r$$). On the basis of information, answer the following question.
    $$2(C_2)-4(C_4)+6(C_6)$$_______ is?
  • Question 8
    1 / -0
    Let $$5 < n_1 < n_2 < n_3 < n_4$$ be integers such that $$n_1+n_2+n_3+n_4=35$$. The number of such distinct arrangements $$(n_1, n_2, n_3, n_4)$$.
    Solution
    $${ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+.....+{ n }_{ k }=R$$
    for this arrangement,
    No. of arrangement or distinct arrangements are $${ R+K-1 }_{ { C }_{ K-1 } }$$
    So, for $${ n }_{ 1 }+{ n }_{ 2 }+{ n }_{ 3 }+{ n }_{ 4 }=35$$
    No. of arrangements $$={ 35+4-1 }_{ { C }_{ 4-1 } }={ 38 }_{ { C }_{ 3 } }$$
  • Question 9
    1 / -0
    The value of $${ _{  }^{ 13 }{ C } }_{ 2 }+{ _{  }^{ 13 }{ C } }_{ 3 }+{ _{  }^{ 13 }{ C } }_{ 4 }+....+{ _{  }^{ 13 }{ C } }_{ 13 }$$ is 
    Solution

    $${\textbf{Step -1: Simplifying the problem.}}$$

                      $${}^{13}{C_2} + {}^{13}{C_3} + ...... + {}^{13}{C_{13}}.$$

                     $$ = {}^{13}{C_0} + {}^{13}{C_1} + {}^{13}{C_2} + {}^{13}{C_3} + ...... + {}^{13}{C_{13}} - {}^{13}{C_0} - {}^{13}{C_1}.$$

                     $$ = \left( {{}^{13}{C_0} + {}^{13}{C_1} + {}^{13}{C_2} + ..... + {}^{13}{C_{13}}} \right) - \left( {{}^{13}{C_0} + {}^{13}{C_1}} \right){\text{   }} \to \left( {\text{i}} \right).$$

    $${\textbf{Step -2: Deduce the value of }}\mathbf{\left( {{}^{13}{C_0} + {}^{13}{C_1} + {}^{13}{C_2} + ..... + {}^{13}{C_{13}}} \right)}{\textbf{ using summation formula}}{\textbf{. }}$$

                       $$\sum\limits_{i = 0}^n {{}^n{C_i}}  = {2^n}{\text{   }} \to \left( {{\text{ii}}} \right)$$

                      $$ \Rightarrow \left( {{}^{13}{C_0} + {}^{13}{C_1} + {}^{13}{C_2} + ..... + {}^{13}{C_{13}}} \right) = \sum\limits_{i = 0}^{13} {{}^{13}{C_i}.} $$

                      $$ \Rightarrow \sum\limits_{i = 0}^{13} {{}^{13}{C_i} = {2^{13}}({\text{By using (}}ii{\text{)}})} .$$

                     $${\text{then, using (i) and (ii) we get}},$$

                     $$\therefore {2^{13}} - \left( {{}^{13}{C_0} + {}^{13}{C_1}} \right).$$

                     $$ = {2^{13}} - \left( {\dfrac{{13!}}{{13!0!}} + \dfrac{{13!}}{{12!1!}}} \right).$$

                     $$ = {2^{13}} - \left( {1 + 13} \right).$$

                     $$ = {2^{13}} - 14.$$

    $${\textbf{Hence , the correct answer is (B) }}\mathbf{{2^{13}} - 14.}$$

  • Question 10
    1 / -0
    In an examination there are three multiple choice questions and each question has $$4$$ choices. Number of ways in which a student can fail to get all answer correct is?
    Solution
    There are 4 choices for each question. So, there
    are 4 ways to answer a question.

    Number of ways to answer 3 questions

    $$=4\times 4\times 4$$
          $$\downarrow $$     $$\downarrow $$     $$\downarrow $$
    $$1^{st}$$ question $$2^{nd}$$  $$3^{rd}$$
    $$= 64$$

    Out of 64 ways there is only one way which has
    all the answers correct. 

    So, Number of ways in which a student can fail to get all answers
    correct $$= 64-1$$

                 $$= 63$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now