$${\textbf{Step
-1: Simplifying the problem.}}$$
$${}^{13}{C_2}
+ {}^{13}{C_3} + ...... + {}^{13}{C_{13}}.$$
$$ =
{}^{13}{C_0} + {}^{13}{C_1} + {}^{13}{C_2} + {}^{13}{C_3} + ...... +
{}^{13}{C_{13}} - {}^{13}{C_0} - {}^{13}{C_1}.$$
$$ =
\left( {{}^{13}{C_0} + {}^{13}{C_1} + {}^{13}{C_2} + ..... + {}^{13}{C_{13}}}
\right) - \left( {{}^{13}{C_0} + {}^{13}{C_1}}
\right){\text{ }} \to \left( {\text{i}} \right).$$
$${\textbf{Step -2:
Deduce the value of }}\mathbf{\left( {{}^{13}{C_0} + {}^{13}{C_1} +
{}^{13}{C_2} + ..... + {}^{13}{C_{13}}} \right)}{\textbf{ using summation
formula}}{\textbf{. }}$$
$$\sum\limits_{i
= 0}^n {{}^n{C_i}} = {2^n}{\text{ }} \to \left(
{{\text{ii}}} \right)$$
$$ \Rightarrow \left( {{}^{13}{C_0} + {}^{13}{C_1} +
{}^{13}{C_2} + ..... + {}^{13}{C_{13}}} \right) = \sum\limits_{i = 0}^{13}
{{}^{13}{C_i}.} $$
$$ \Rightarrow \sum\limits_{i = 0}^{13}
{{}^{13}{C_i} = {2^{13}}({\text{By using (}}ii{\text{)}})} .$$
$${\text{then,
using (i) and (ii) we get}},$$
$$\therefore {2^{13}} - \left(
{{}^{13}{C_0} + {}^{13}{C_1}} \right).$$
$$ =
{2^{13}} - \left( {\dfrac{{13!}}{{13!0!}} + \dfrac{{13!}}{{12!1!}}} \right).$$
$$ =
{2^{13}} - \left( {1 + 13} \right).$$
$$ =
{2^{13}} - 14.$$
$${\textbf{Hence , the correct answer is (B) }}\mathbf{{2^{13}} - 14.}$$