Self Studies

Permutations and Combinations Test 31

Result Self Studies

Permutations and Combinations Test 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $${ S }_{ n }={ C }_{ 0 }{ C }_{ 1 }+{ C }_{ 1 }{ C }_{ 2 }+.......+{ C }_{ n-1 }{ C }_{ n }$$ and $$\frac { { S }_{ n+1 } }{ { S }_{ n } } =\frac { 15 }{ 4 } $$, then value of n
    Solution

  • Question 2
    1 / -0
    If $$x+y=1$$, then $$\displaystyle\sum^n_{r=0}r\cdot {^{n}C_r}x^r\cdot y^{n-r}=?$$
    Solution

  • Question 3
    1 / -0
    The number of ways of 3 scholarship of unequal value be awarded to 17 candidates, Such that no candidate gets more than one scholarship is 
    Solution
    There are $$3$$ scholarships to be awarded between $$17$$ candidates so that no one candidate can get more than one scholarship.

    The $$1st$$ scholarship can be given to any of the $$17$$ candidates, So $$17$$ choices.

    $$\Rightarrow$$ The $$2nd$$ can be given to the remaining $$16$$ candidates in $${^{16}C_1}=16$$ ways.

    Similarly the third in $$15$$ ways.

    $$\Rightarrow Total =17\times16\times15={^{17}P_3}$$
     
    Hence, the answer is $${^{17}P_3}$$
  • Question 4
    1 / -0
    The number of permutations of letters of the word "PARALLAL" atken four at a time must be, 
    Solution
    Permutation of word PARALLAL taken four at a time
    Four letter word might be $$LLL$$_
    So total of $$16$$ words [As $$4$$ways, $$4$$spots]
    For $$AALL$$, $$6$$ different arrangements 
    $$AA$$_ _, can be $${ 4 }_{ { C }_{ 2 } }$$ ways $$=6$$ ways
    Arranged in $$12$$ ways is total of $$72$$ words
    And extra words can be formed in $$120$$ ways
    $$16+6+144+120=286$$ ways
  • Question 5
    1 / -0
    The value of $$\sum _{ r=0 }^{ s }{ \sum _{ s=1 }^{ n }{  }  } ^nC_s.$$ $$^sC_r$$ (where $$r\le s$$ is )
    Solution

  • Question 6
    1 / -0
    There are n identical red balls & m identical green balls. The number of different linear arrangements consisting of "n red balls but not necessarily all the green balls" is $${^{x}C_y}$$ then?
    Solution

  • Question 7
    1 / -0
    The exponent of 11 in $$^{200}C_{125}$$ is 
    Solution

  • Question 8
    1 / -0
    $$1+1.1!+2.2!+3.3!+...+n.n!$$ is equal to 
    Solution
    given,

    $$1+1.1!+2.2!+3.3!+......+n.n!$$

    $$=1+(2-1).1!+(3-1)!.2!+.......+(n+1-1).n!$$

    $$=1+2.1!-1.1!+3.2!-1.2!+...+(n+1)n!-1n!$$

    $$=1+2!-1!+3!-2!+4!-3!+......(n+1)!-n!$$

    $$=1+(n+1)!-1$$

    $$=(n+1)!$$
  • Question 9
    1 / -0
    If $$\displaystyle \frac{1}{{^4{C_n}}} = \frac{1}{{^5{C_n}}} + \frac{1}{{^6{C_n}}}$$, then $$n=$$
    Solution
    $$\dfrac { 1 }{ { 4 }_{ { C }_{ n } } } =\dfrac { 1 }{ { 5 }_{ { C }_{ n } } } +\dfrac { 1 }{ { 6 }_{ { C }_{ n } } } $$

    $$\Rightarrow \dfrac { 1 }{ \dfrac { 4! }{ \left( 4-n \right) !n! }  } =\dfrac { 1 }{ \dfrac { 5! }{ \left( 5-n \right) !n! }  } +\dfrac { 1 }{ \dfrac { 6! }{ \left( 6-n \right) !n! }  } $$

    $$\Rightarrow \dfrac { \left( 4-n \right) ! }{ 4! } =\dfrac { \left( 5-n \right) ! }{ 5! } +\dfrac { \left( 6-n \right) ! }{ 6! } $$

    $$\Rightarrow \dfrac { 1 }{ 4! } =\dfrac { 5-n }{ 5! } +\dfrac { \left( 6-n \right) \left( 5-n \right)  }{ 6! } $$

    $$\Rightarrow \dfrac { 5-n }{ 5 } +\dfrac { \left( 6-n \right) \left( 5-n \right)  }{ 6\times 5 } =1$$

    $$\Rightarrow \left( 5-n \right) \left( \dfrac { 1 }{ 5 } +\dfrac { 6-n }{ 30 }  \right) =1$$

    $$\Rightarrow \left( 5-n \right) \left[ \dfrac { 12-n }{ 30 }  \right] =1$$

    $$\Rightarrow \left( 5-n \right) \left( 12-n \right) =30$$

    $$\Rightarrow { n }^{ 2 }-17n+30=0$$

    $$\Rightarrow n=15$$  or  $$n=2$$         $$\because$$   $$n$$ cannot be greater than $$4$$

    $$\therefore$$    $$n=2$$                          [B]
  • Question 10
    1 / -0
    The number of such numbers which are even (all digits are different) is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now