Self Studies

Permutations and Combinations Test 33

Result Self Studies

Permutations and Combinations Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A shelf contains $$15$$ books, of which $$4$$ are single volume and the others are $$8$$ and $$3$$ volumes respectively. In how many ways can these books be arranged on the shelf so that order of the volumes of same work is maintained $$?$$
    Solution
    No of books $$15$$
    No of ways $$4$$ volumes are arranged are $$4!$$ ways
    No of ways $$8$$ volumes are arranged are $$8!$$ ways
    No of ways $$3$$ volumes are arranged are $$3!$$ ways
    They are arranged in $$3!$$ ways one above the other

    So no.of ways is $$4!8!3!3!$$
  • Question 2
    1 / -0
    $$\displaystyle \sum^{n-1}_{r=0}\dfrac {^{n}C_{r}}{^{n}C_{r}+^{n}C_{r+1}}=$$
    Solution
    $$\displaystyle \sum^{n-1}_{r=0}\dfrac {^{n}C_{r}}{^{n}C_{r}+^{n}C_{r+1}}$$
    we know $$^{n}C_{r}+^{n}C_{r-1}=^{n+1}C_{r}$$
    $$\therefore \Rightarrow \sum^{n-1}_{r=0}\dfrac {^{n}C_{r}}{^{n+1}C_{r+1}}$$
    Expanding
    $$\Rightarrow \sum^{n-1}_{r=0}\frac{n!}{(n-r)!\cdot r!}\cdot \frac{(n-r)!\cdot (r+1)!}{(n+1)!}$$
    $$\Rightarrow \sum^{n-1}_{r=0}\frac{r+1}{n+1}$$
    $$\Rightarrow \frac{1+2+3\cdot \cdot \cdot n}{n+1}$$
    $$\Rightarrow \frac{n}{2}$$
  • Question 3
    1 / -0
    If  $$a=\,^ { m }C _ { 2 } ,$$  then  $$^ { a } C _ { 2 }$$ is equal to
    Solution
    $${\textbf{Step-1:Define and give examples of nCr in terms of factorials}}$$
                     $${\text{Given,}}$$
                     $$\Rightarrow a=^mC_2$$
                     $$^aC_2=?$$
                     $$\Rightarrow a=\dfrac{m!}{(m-2)!2!}$$
                     $$=\dfrac{m(m-1)}{2!}$$
                    
                     $$=\dfrac{(\dfrac{m(m-1)}{2})(\dfrac{m(m-1)}{2}-1)}{2}$$
                     
                     $$=\dfrac{(\dfrac{m(m-1)}{2})(\dfrac{m(m-1)-2}{2})}{2}$$

                     $$=\dfrac{m(m-1)(m-2)(m+1)}{8}$$
              
                     $$=\dfrac{(m-1)(m-2)(m)(m+1)}{8}$$
              
                     $$=\dfrac{1(m+1)!}{8(m-3)!}$$

                     $$=\dfrac{3 (m-1)!}{1.2.3.4(m-3)!}$$
                    
                     $$^aC_2=$$$$3. \,^ { m + 1 }C_4$$
    $${\textbf{Hence option D is correct}}$$
  • Question 4
    1 / -0
    $$^{ n }{ C }_{ 1 }.2+^{ n }{ C }_{ 2 }.\frac { { 2 }^{ 2 } }{ 3 } +^{ n }{ C }_{ 3 }.\frac { { 2 }^{ 3 } }{ { 3 }^{ 2 } } +......^{ n }{ C }_{ n }.\frac { { 2 }^{ n } }{ { 3 }^{ n-1 } } =$$
  • Question 5
    1 / -0
    The number of seven letter words that can be formed by using the letters of the word  $$SUCCESS$$  that the two  $$C$$ are together but no two  $$S$$  are together is
    Solution
    using the letters of the word  $$SUCCESS$$  that the two  $$C$$ are together but no two  $$S$$  are together 
    let two C's be 1 unit 
    $$\therefore $$ no. of ways $$=\frac{6!}{4!}=30$$
    We have to put 1 letter between one S
    So, No of ways$$=2\times 3!=12$$
    No. of ways=30-12=18
  • Question 6
    1 / -0
    Nine boys and 3 girls are to be seated in 2 vans, each having numbered seats, 3 in front and 4 at back. The number of ways of seating arrangements, if the girls should sit together in a back row on adjacent seats, is 
    Solution

  • Question 7
    1 / -0
    Six people are going to sit in a row on a bench. $$A$$ and $$B$$ are adjacent, $$C$$ does not want to sit adjacent to $$D.E$$ and $$F$$ can sit anywhere. Number of ways in which these six people can be seated is 
    Solution
    A, B, C, D, E, F
    Consider AB as group so we have AB, C, D, E, F.
    We have totally $$5$$
    No. of ways$$(w_1)=5!\times 2$$
    $$=240$$
    Let CD are adjacent now AB, CD, E, F
    No. of ways$$(w_2)=4!2!2!$$
    $$=96$$
    Total no. of ways
    $$W=w_1-w_2$$
    $$=240-96$$
    $$=144$$.

  • Question 8
    1 / -0
    How many different words can be formed by jumbling the letters in the word  $$MISSISSIPPI$$  in which no two  $$S$$  are adjacent ?
    Solution
    We have the word $$MISSISSIPPI$$
    In this word there are $$4I,4S,2P\,and\,1M$$
    No two $$S$$ should be together,
    Hence, we can place $$S$$ at these places
    Therefore, the possible number of words is given by
    $$\begin{array}{l} \frac { { ^{ 8 }{ C_{ 4 } }.7! } }{ { 4!2! } }  \\ =\frac { { ^{ 8 }{ C_{ 4 } }.7.6! } }{ { 4.2! } }  \\ ={ 7.^{ 8 } }{ C_{ 4 } }{ .^{ 6 } }{ C_{ 4 } } \\ Hence,\, option\, D\, is\, the\, correct\, answer. \end{array}$$
  • Question 9
    1 / -0
    In the expansion of $$\left(x^3 - \dfrac{1}{x^2}\right)^{15}$$, the constant terms is
    Solution
    We have,
    $${ \left( { { x^{ 2 } }-\dfrac { 1 }{ { { x^{ 2 } } } }  } \right) ^{ 15 } } \\ { T_{ r+1 } }{ =^{ 15 } }{ C_{ r } }{ \left( { -1 } \right) ^{ r } }{ x^{ 15-r } } \\ { =^{ 15 } }{ C_{ r } }{ \left( { -1 } \right) ^{ r } }{ x^{ 45-5r } } $$

    $$\\ For\, constant\  term\,  \\ 45-5t=0 \\ r=9 $$

    Therefore,
    $$=- ^{ 15 }{ C_{ 9 } } = -^{ 15 }{ C_{ 6 } }$$

    Hence, this is the answer.
  • Question 10
    1 / -0
    The value of $$^{47}C_{4}+\displaystyle \sum _{ j=1 }^{ 5 }\ ^{ \left( 52-j \right)  } { C }_{ 3 }$$ is
    Solution
    We  have,
    $$\begin{array}{l} ^{ 47 }{ C_{ 4 } }{ +^{ 51 } }{ C_{ 3 } }{ +^{ 50 } }{ C_{ 3 } }{ +^{ 49 } }{ C_{ 3 } }{ +^{ 48 } }{ C_{ 3 } }{ +^{ 47 } }{ C_{ 3 } } \\ { =^{ n } }{ C_{ r } }{ +^{ n } }{ C_{ r-1 } }{ =^{ n+1 } }{ C_{ r } } \\ { =^{ 48 } }{ C_{ 4 } }{ +^{ 48 } }{ C_{ 3 } }{ +^{ 49 } }{ C_{ 3 } }{ +^{ 50 } }{ C_{ 3 } }{ +^{ 51 } }{ C_{ 3 } } \\ { =^{ 49 } }{ C_{ 4 } }{ +^{ 49 } }{ C_{ 3 } }{ +^{ 50 } }{ C_{ 3 } }{ +^{ 51 } }{ C_{ 3 } } \end{array}$$
    Similarly,
    $$=^{52}{C_4}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now