Self Studies

Permutations and Combinations Test 36

Result Self Studies

Permutations and Combinations Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A school committee consists of $$2$$ teachers and $$4$$ students. The number of different committees that can be formed from $$5$$ teachers and $$10$$ students is
    Solution
    Given, a school committee consists of $$2$$ teachers and $$4$$ students. 
    The number of different committees that can be formed is simply, choosing $$2$$ out of the $$5$$ teachers and $$4$$ students out of the $$10$$ students, we get -

    $$\Rightarrow$$  $$n=\,^5C_2\times \,^{10}C_4$$

                    $$=\dfrac{5\times 4}{2\times 1}\times\dfrac{10\times 9\times 8\times 7}{4\times 3\times 2\times 1}$$

                    $$=2100$$
  • Question 2
    1 / -0
    Number of cyphers at the end of $$^{2002}$$ C$$_{1001}$$ is
    Solution

  • Question 3
    1 / -0
    If $$\displaystyle \sum _{ r=0 }^{ n }{ \left\{ \dfrac { { n{ C }_{ r-1 } } }{ n{ C }_{ r }+n{ C }_{ r-1 } }  \right\}  } =2 $$ then n is equal to
    Solution
    Given, 
     $$\displaystyle \sum \limits_{ r=0 }^{ n }{ \left\{ \frac { { ^n{ C }_{ r-1 } } }{ n{ C }_{ r }+n{ C }_{ r-1 } }  \right\}  } =2 $$

    or,  $$\displaystyle \sum\limits _{ r=0 }^{ n }{ \left\{ \frac { { ^n{ C }_{ r-1 } } }{^{( n+1)}{ C }_{ r } }  \right\}  } =2 $$

    or,  $$\sum\limits _{ r=0 }^{ n }\dfrac{\dfrac{n!}{(r-1)!(n-r+1)!}}{\dfrac{(n+1)!}{(n+1-r)!(r)!}} =2$$

    or,  $$\sum\limits _{ r=0 }^{ n }{\dfrac{r}{n+1} } =2$$

    or, $$\dfrac{1}{n+1}\times \dfrac{n(n+1)}{2}=\dfrac{}{}$$

    or, $$\dfrac{n}{2}=2$$

    or, $$n=4$$.
  • Question 4
    1 / -0
    If $$\frac{3^{3 n} \cdot 2^{n}}{108}+\frac{3^{3 n}}{729}+\frac{3^{3 n} \cdot 2^{2 n}}{48}+\frac{2^{3 n} \cdot 3^{3 n}}{64}=37^{3} \cdot 3^{6}$$
    , then find the value of n ?
  • Question 5
    1 / -0
    The number of all the possible selection which a student can make for answering one or more questions out of eight given question in a paper, which each question has an alternative is 
    Solution
    No. of ways$$={^{8}C_1}+{^{8}C_2}+{^{8}C_3}+{^{8}C_4}+{^{8}C_5}+{^{8}C_6}+{^{8}C_7}+{^{8}C_8}$$
    $$=({^{8}C_0}+{^{8}C_1}+......{^{8}C_8})-{^{8}C_0}$$
    $$=2^8-1=256-1$$
    $$=255$$.
  • Question 6
    1 / -0
    $$^{n }{ C }_{ r }+^{ n }{ C }_{ r+1 }$$ is equal to______________.
    Solution
    $$^nC_{r} + ^nC_{r+1}$$

    $$= \dfrac{n!}{r!(n-r)!} + \dfrac{n!}{(r+1)!(n-r-1)!}$$

    $$= \dfrac{(r+1)\times n!}{(r+1)!(n-r)!} + \dfrac{(n-r)n!}{(r+1)!(n-r)!}$$

    Taking LCM we get,

    $$= \dfrac{(n+1)n!}{(r+1)!(n-r)!}$$

    $$= \dfrac{(n+1)!}{(r+1)!((n+1)-(r+1))!}$$

    $$=\, ^{n+1}C_{r+1}$$
  • Question 7
    1 / -0
    If $$^{n}C_{3} + ^{n}C_{4} > ^{n + 1}C_{3}$$, then
    Solution

  • Question 8
    1 / -0
    $$\displaystyle\sum^{m}_{r=0}{^{n+r}C_n}$$ is equal to?
    Solution
    since $$^{n}\textrm{C}_r=^{n}\textrm{C}_{n-r}$$
    $$^{n}\textrm{C}_{n-r}+^{n}\textrm{C}_{n}=^{n+1}\textrm{C}_{r}$$
    $$\sum^{m}_{r=0}{^{n+r}C_n}=\sum^{m}_{r=0}{^{n+r}C_r}=^{n}\textrm{C}_{0}+^{n+1}\textrm{C}_{1}+^{n+2}\textrm{C}_{2} \cdot \cdot \cdot\cdot ^{n+m}\textrm{C}_{m} $$
    $$=[1 + (n+1)]+^{n+2}\textrm{C}_{2}+^{n+3}\textrm{C}_{3}\cdot \cdot \cdot \cdot ^{n+m}\textrm{C}_{m}$$
    $$=[^{n+2}\textrm{C}_{1}+^{n+2}\textrm{C}_{2}]+^{n+3}\textrm{C}_{3}\cdot \cdot \cdot \cdot ^{n+m}\textrm{C}_{m}$$
    $$\because [n+2]=^{n+2}\textrm{C}_{1}$$
    $$=[^{n+3}\textrm{C}_{2}+^{n+4}\textrm{C}_{3}]+^{n+4}\textrm{C}_{4}\cdot \cdot \cdot \cdot ^{n+m}\textrm{C}_{m}$$and so on....
    $$=^{n+m}\textrm{C}_{m-1}+^{n+m}\textrm{C}_{m-1}$$
    $$=^{n+m+1}\textrm{C}_{m}=^{n+m+1}\textrm{C}_{n+1}\Rightarrow [^{n}\textrm{C}_{r}=^{n}\textrm{C}_{n-r}]$$
    Required answer
  • Question 9
    1 / -0
    The number of permutations which can be formed out of the letters of the word "SERIES" three letters together, is:
    Solution

  • Question 10
    1 / -0
    If $$\alpha = ^{m}C_{2}$$, then $$^{\alpha}C_{2}$$ is equal to
    Solution
    $$\alpha = ^{m}C_{2}\Rightarrow \alpha = \dfrac {m(m -1)}{2}$$

    $$\therefore ^{a}C_{2} = \dfrac {\alpha (\alpha - 1)}{2} = \dfrac {1}{2} \dfrac {m(m - 1)}{2} \left \{\dfrac {m(m - 1)}{2} - 1\right \}$$

    $$= \dfrac {1}{8} m(m - 1)(m - 2)(m + 1)$$

    $$= \dfrac {1}{8} (m + 1)m(m -1)(m - 2) = 3 \  \ ^{m + 1}C_{4}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now