Self Studies

Permutations and Combinations Test 40

Result Self Studies

Permutations and Combinations Test 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ n =  ^mC_2 $$, then the value of  $$ ^nC_2 $$ is given by
    Solution
    Since, $$\displaystyle n = {}^m{C_2} = \frac{{m!}}{{2!\left( {m - 2} \right)!}} = \frac{{m\left( {m - 1} \right)}}{2}$$.
    and $$\displaystyle {}^n{C_2} = \frac{{n!}}{{2!\left( {n - 2} \right)!}} = \frac{{n\left( {n - 1} \right)}}{2}$$
    $$\displaystyle \therefore {}^n{C_2} = \frac{{\left( {\frac{{m\left( {m - 1} \right)}}{2}} \right)\left( {\frac{{m\left( {m - 1} \right)}}{2} - 1} \right)}}{2} $$
                $$\displaystyle = \left( {\frac{{m\left( {m - 1} \right)}}{4}} \right)\left( {\frac{{m\left( {m - 1} \right)}}{2} - 1} \right)$$

                $$\displaystyle =\left( {\frac{{m\left( {m - 1} \right)}}{4}} \right)\left( {\frac{{m\left( {m - 1} \right) - 2}}{2}} \right)$$

                $$\displaystyle =\left( {\frac{{m\left( {m - 1} \right)}}{4}} \right)\left( {\frac{{{m^2} - m - 2}}{2}} \right)$$

                $$\displaystyle =\left( {\frac{{m\left( {m - 1} \right)}}{4}} \right)\left( {\frac{{\left( {m - 2} \right)\left( {m + 1} \right)}}{2}} \right)$$

                $$\displaystyle ={\frac{{\left( {m + 1} \right)m\left( {m - 1} \right)\left( {m - 2} \right)}}{{2 \cdot 4}}}$$
                $$\displaystyle =3\frac{{\left( {m + 1} \right)m\left( {m - 1} \right)\left( {m - 2} \right)\left( {\left( {m - 3} \right)!} \right)}}{{\left( {1 \cdot 2 \cdot 3 \cdot 4} \right)\left( {\left( {m - 3} \right)!} \right)}}$$
                $$\displaystyle =3\left( {{}^{m + 1}{C_4}} \right)$$
  • Question 2
    1 / -0
    lf $$\displaystyle x,y\in(0,30)$$ such that $$ [ \dfrac{x}{3}]+[\dfrac{3x}{2}]+[\dfrac{y}{2}]+[\dfrac{3y}{4}]=\dfrac{11x}{6}+\dfrac{5y}{4} $$ (where [x] denote greatest integer $$ \le x $$) then the number of ordered pairs $$(x, y)$$ is
    Solution
    Let $$\{\mathrm{x}\}=\mathrm{x}-[\mathrm{x}]$$ denote fractional part of $$\mathrm{x}   i.e     0\leq$$ $$\{\mathrm{x}\}<1$$
    Now given expression is
    $$\displaystyle



    \frac{x}{3}-\{\frac{x}{3}\}+\frac{3x}{2}-\{\frac{3x}{2}\}+\frac{y}{2}-\{\frac{y}{2}\}+\frac{3y}{4}-\{\frac{3y}{4}\}=\frac{11x}{6}+\frac{5y}{4}$$
    $$\Rightarrow  \displaystyle \{\frac{x}{3}\}+\{\frac{3x}{2}\}+\{\frac{y}{2}\}+\{\frac{3y}{4}\}=0$$
    $$\therefore  \displaystyle \{\frac{x}{3}\}=\{\frac{3x}{2}\}=\{\frac{y}{2}\}=\{\frac{3y}{4}\}=0$$
    $$\Rightarrow x =6,12,18,24$$;
    and $$y =4,8,12,16,20,24,28$$
    Hence no. of ordered pairs $$=4\times7=28$$
  • Question 3
    1 / -0
    If $$_{  }^{ n+1 }{ { C }_{ r+1 } }$$: $$_{  }^{ n }{ { C }_{ r } }$$: $$_{  }^{ n-1 }{ { C }_{ r-1 } }=$$ 11: 6: 3 , then $$r=$$
    Solution
    $$\dfrac{\:^{n+1}C_{r+1}}{\:^{n}C_{r}}=\dfrac{11}{6}$$
    $$\dfrac{(n+1)!.(n-r)!.r!}{(n-r)!(r+1)!n!}=\dfrac{11}{6}$$
    $$\dfrac{n+1}{r+1}=\dfrac{11}{6}$$
    $$6n+6=11r+11$$
    $$6n-11r=5$$ ...(i)
    and
    $$\dfrac{\:^{n}C_{r}}{\:^{n-1}C_{r-1}}=2$$
    $$\dfrac{n!(n-r)!(r-1)!}{(n-1)!(n-r)!r!}=2$$
    $$\dfrac{n}{r}=2$$
    $$n=2r$$ ...(ii)
    Substituting in (i), we get
    $$6(2r)-11r=5$$
    $$r=5$$ and $$n=10$$
  • Question 4
    1 / -0
     If $$ ^{n-1}C_r=(k^2-3 ) ^nC_{r+1} $$, then $$ k\in $$
    Solution
    $$k^{2}-3=\displaystyle \frac{{}^{n-1}C_{r}}{{}^n{C_{r+1}}}$$
    $$=\displaystyle \frac{(n-1)!}{r!.(n-r-1)!}\times\frac{(r+1)!(n-r-1)!}{n!}$$
    $$=\displaystyle \frac{r+1}{n}$$
    $$\therefore k^{2}=\displaystyle \frac{r+1}{n}+3$$
    Also $$n-1\geq r\Rightarrow n\geq r +1(r \geq 0)$$
    $$k^{2}\in(3,4]\Rightarrow k\in(\sqrt{3},2]$$
  • Question 5
    1 / -0
    In a test there were $$n$$ questions. In the test $$ 2^{n - i} $$ students gave wrong answers to at least $$i$$ questions $$i = 1, 2, 3 .... n$$. If the total number of wrong answers given is $$2047$$, then $$n$$ is
    Solution
    Let the number of students who gave wrong answer to exactly $$i$$ questions be $$E_i$$
    Number students who gave wrong answer to at least $$1$$ question $$=2^{n-1} = E_1 + E_2 + E_3 + .... E_n$$
    Number students who gave wrong answer to at least $$2$$ questions $$=2^{n-2} = E_2 + E_3 + E_4 + ... + E_n$$
    Number students who gave wrong answer to at least $$3$$ questions $$=2^{n-3} = E_3 + E_4 + E_5 + ... E_n$$
    :
    :
    Number students who gave wrong answer to at least $$n$$ questions $$=1 = E_n$$
    Number of wrong answers given $$=E_1 + 2E_2 + 3E_3 + ...+nE_n$$
    Adding $$n$$ equations listed above we have,
    $$E_1 + 2E_2 + 3E_3 + ...+nE_n =1+2+2^{2}+2^{3}+...2^{n-1}$$
    Hence,
    Sum$$=1+2+2^{2}+2^{3}+...2^{n-1}$$

    $$2047=\dfrac{2^{n}-1}{2-1}$$

    $$2047=2^{n}-1$$
    $$\therefore 2^{n}=2048$$
    $$\therefore n=11$$
  • Question 6
    1 / -0
    Which of the following is equal to $$\dfrac{1.3.5....(2n-1)}{2.4.6....(2n)}$$?
    Solution
    $$\dfrac { 1.3.5...(2n-1) }{ 2.4.6...(2n) } \\ \Longrightarrow \dfrac { 1.2.3.4...(2n-1).(2n) }{ { (2.4.6...(2n)) }^{ 2 } } \\ \Longrightarrow \dfrac { 2n! }{ { ((2.1)(2.2).(2.3)...(2.n)) }^{ 2 } } \\ \Longrightarrow \dfrac { 2n! }{ { \left( { 2 }^{ n }n! \right)  }^{ 2 } } \\ \Longrightarrow \dfrac { 2n! }{ { \left( { 2 }^{ 2n })(n! \right)  }^{ 2 } } $$
  • Question 7
    1 / -0
    The value of $$\displaystyle \sum_{r=0}^{n-1} {\;}^nC_r / (^nC_r+^nC_{r+1})$$ equals
    Solution
    $$\displaystyle \sum_{r=0}^{n-1}\dfrac {^nC_r}{^nC_r+^nC_{r+1}}$$ $$=\displaystyle \sum_{r=0}^{n-1}\dfrac {1}{1+\dfrac {^nC_{r+1}}{^nC_r}}$$ $$=\displaystyle \sum_{r=0}^{n-1}\dfrac {1}{1+\dfrac {n-r}{r+1}}$$
    $$=\displaystyle \sum_{r=0}^{n-1}\dfrac {r+1}{n+1}=\dfrac {1}{n+1}\displaystyle \sum_{r=0}^{n-1}(r+1)$$
    $$=\displaystyle \dfrac {1}{(n+1)}[1+2+....+n]=\dfrac {n}{2}$$
  • Question 8
    1 / -0
    The value of $$x$$ in the equation $$3 \times ^{x+1}C_2 = 2\times ^{x+2}C_2, \space x\space \in N$$ is
    Solution
    Given:
     $$3\times \left( \begin{matrix} x+1 \\ 2 \end{matrix} \right) =2\times \left( \begin{matrix} x+2 \\ 2 \end{matrix} \right) \\ \Rightarrow \dfrac { \left( \begin{matrix} x+2 \\ 2 \end{matrix} \right)  }{ \left( \begin{matrix} x+1 \\ 2 \end{matrix} \right)  } =\dfrac { 3 }{ 2 } \quad \Rightarrow \dfrac { \left( x+2 \right) \left( x+1 \right)  }{ \left( x+1 \right) x } =\dfrac { 3 }{ 2 } \\ \quad \Rightarrow 3x=2x+4\quad \quad \Rightarrow x=4$$
  • Question 9
    1 / -0
    How many different signals can be made by hoisting $$6$$ differently coloured flags one above the other, when any number of them may be hoisted at once?
    Solution
    Here the flags are placed one above the another so, the order is important => we will be using permutations
    We can hoist flags $$1$$ to $$6$$,
    $$=_{1}^{6}\textrm{P}+_{2}^{6}\textrm{P}+_{3}^{6}\textrm{P}+_{4}^{6}\textrm{P}+_{5}^{6}\textrm{P}+_{6}^{6}\textrm{P}=1956$$ ways
    Hence, option 'A' is correct.
  • Question 10
    1 / -0
    The letters of word $$OUGHT$$ are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word $$TOUGH$$ in this dictionary.
    Solution
    Starting with G there are $$4!$$
    Starting with H there are $$4!$$
    Starting with O there are $$4!$$
    Starting with TG there are $$3!$$
    Starting with TH there are $$3!$$
    Starting with TOG there are $$2!$$
    Starting with TOH there are $$2!$$
    Starting with TOUGH there are $$1!$$

    The rank of the word TOUGH in this dictionary
    $$=4!+4!+4!+3!+3!+2!+2!+1!={89}^{th} word$$

    Hence, option 'A' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now