Self Studies

Permutations and Combinations Test 44

Result Self Studies

Permutations and Combinations Test 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \sum _{ 0\le i\le  }^{  }{ \sum _{ j\le 10 }^{  }{ ^{ 10 }{ { C }_{ j } }^{ j }{ { C }_{ i } } }  } $$ is equal to
    Solution
    $$\displaystyle \sum _{ 0\le i\le  }^{  }{ \sum _{ j\le 10 }^{  }{ ^{ 10 }{ { C }_{ j } } }  } \quad \quad ^{ j }{ { C }_{ i } }$$
    $$\displaystyle ^{ 10 }{ { C }_{ 0 } }\times ^{ 0 }{ { C }_{ 0 } }\times ^{ 10 }{ { C }_{ 0 } }\left( ^{ 1 }{ { C }_{ 0 }\times ^{ 1 }{ { C }_{ 1 } } } \right) +^{ 10 }{ { C }_{ 2 } }\left( ^{ 2 }{ { C }_{ 0 } }+^{ 2 }{ { C }_{ 1 } }+^{ 2 }{ { C }_{ 2 } } \right) +^{ 10 }{ { C }_{ 3 } }\left( ^{ 3 }{ { C }_{ 0 } }+^{ 3 }{ { C }_{ 1 }+ }^{ 3 }{ { C }_{ 2 } }+^{ 3 }{ { C }_{ 3 } } \right)$$
    $$\displaystyle  +...+^{ 10 }{ { C }_{ 10 } }\left( ^{ 10 }{ { C }_{ 0 }+ }^{ 10 }{ { C }_{ 1 } }+...+^{ 10 }{ { C }_{ 0 } } \right) $$
    $$\displaystyle =^{ 10 }{ { C }_{ 0 } }.{ 2 }^{ 0 }+^{ 10 }{ { C }_{ 1 } }.{ 2 }^{ 1 }+^{ 10 }{ { C }_{ 2 } }.{ 2 }^{ 2 }+...+^{ 10 }{ { C }_{ 10 } }.{ 2 }^{ 10 }$$
    $$\displaystyle ={ \left( 1+2 \right)  }^{ 10 }={ 3 }^{ 10 }.$$
  • Question 2
    1 / -0
    The sum $$\displaystyle \sum_{i=0}^{m}\binom{10}{i}\binom{20}{m-i}$$ be maximum when m is
    Solution
    Add upper suffixces if their sum is even the half of it will be the value r otherwise the value of r be sum of upper suffixces +1 divided by 2.
    Given $$\displaystyle S=\sum_{t=0}^{m}\binom{10}{i}\binom{20}{m-i}=\binom{10}{0}\binom{20}{m}+\binom{10}{1}\binom{20}{m-1}+\binom{10}{2}\binom{20}{m-2}+...+\binom{10}{m}\binom{20}{0}$$
    In such cases we observe the upper suffixces and lower suffixces.
    Upper suffices are 10 and 20 and lower suffixces taken the value (0...m).
    In such cases we consider the two Binomial expansions $$\displaystyle \left ( 1+x \right )^{p}$$ and $$\displaystyle \left ( 1+x \right )^{q}$$ (Here p=10, q=20 or q=10, p=20) multiply them and collect the required exponent of x to which the given expression can be obtained.
    Consider $$\displaystyle \left ( 1+x \right )^{10}\left ( 1+x \right )^{20}=\left ( ^{10}C_{0}+^{10}C_{2}x^{2}+...+^{10}C_{10^{x^{10}}} \right )\left ( ^{20}C_{0} +^{20}C_{1}x+...+^{20}C_{20^{x^{20}}}\right )$$
    $$\displaystyle \left ( 1+x \right )^{30}=\left ( ^{10}C_{0} +^{10}C_{1^{x^{1}}}+...+^{10}C_{10^{x^{10}}}\right ).\left ( ^{20}C_{0}+^{20}C_{1}x^{1}+...+^{20}C_{m^{x^{m}}}+...+^{20}C_{20^{x^{20}}} \right )$$
    and collecting coefficient of $$\displaystyle x^{m}$$ both side, we get  $$\displaystyle ^{30}C_{m}=\binom{10}{0}\binom{20}{m}+\binom{10}{1}\binom{20}{m-2}+...+\binom{10}{m}\binom{20}{0}$$ now for max value of the expression will be at $$\displaystyle m=\frac{30}{2}=15$$ as upper suffix is even $$\displaystyle \therefore m=15$$ which is given in (a).
  • Question 3
    1 / -0
    The value of the expression 
    $$\displaystyle2^{k}\binom{n}{0}\binom{n}{k}-2^{k-1}\binom{n}{1}\binom{n-1}{k-1}+2^{k-2}\binom{n}{2}\binom{n-2}{k-2}..+(-1)^{k}\binom{n}{k}\binom{n-k}{0}$$ is
    Solution
    $$\displaystyle 2^{k}\binom{n}{0}\binom{n}{k}-2^{k-1}\binom{n}{1}\binom{n-1}{k-1}+2^{k-2}\binom{n}{2}\binom{n-2}{k-2}..+(-1)^{k}\binom{n}{k}\binom{n-k}{0}$$
    We know that
    $$\displaystyle\binom{n}{0}\binom{n}{k}=\binom{k}{0}\binom{n}{k}$$

    $$\displaystyle\binom{n}{1}\binom{n-1}{k-1}=\displaystyle\frac { n! }{ (n-1)! } \frac { (n-1)! }{ (n-k)!(k-1)! } =\frac { k(n!) }{ k!(n-k)! } =\binom{k}{1}\binom{n}{k}$$

    In the similar manner
    $$\displaystyle\binom{n}{k}\binom{n-k}{0}=\binom{k}{k}\binom{n}{k}$$

    $$\Rightarrow \displaystyle 2^{k}\binom{k}{0}\binom{n}{k}-2^{k-1}\binom{k}{1}\binom{n}{k}+2^{k-2}\binom{k}{2}\binom{n}{k}..+(-1)^{k}\binom{k}{k}\binom{n}{k}$$

    $$\Rightarrow \displaystyle \binom{n}{k}\left[2^{k}\binom{k}{0}-2^{k-1}\binom{k}{1}+2^{k-2}\binom{k}{2}...+(-1)^{k}\binom{k}{k}\right]$$

    $$\Rightarrow \displaystyle \binom{n}{k}\left(2-1\right)^{k}$$

    $$=\displaystyle \binom{n}{k}$$
    Hence, option A.
  • Question 4
    1 / -0
    If $$\displaystyle ^{100}C_{3} = 161700$$, then $$^{100}C_{97}$$ is equal to___.
    Solution
    A properties of combinations is
    $$ ^nC_r = ^nC_{r-1} $$

    So, $$^{100}C_{97}  = ^{100}C_{ 100-97 } =  ^{100}C_{ 3 } = 1,61,700 $$


  • Question 5
    1 / -0
    A road network as shown in the figure connect four cities. In how many ways can you start from any city (say A) and come back to it without travelling on the same road more than once ?

    Solution

    Paths are shown as :

    Similarly if we start from A towards B we get another $$4$$ paths.

    Similarly if we start from A towards B again $$3$$ paths.

     Total different paths $$4\times3=12$$


  • Question 6
    1 / -0
    If $$\displaystyle ^{n}C_{3}=  ^{n}C_{5'}$$ then find the value of n:
    Solution
    $$ ^nC_r = \dfrac { n! }{ (r!)(n-r)! } $$

    Given, $$ ^nC_3 =^nC_5 $$
    $$ => \dfrac { n! }{ (3!) (n-3)! } =\dfrac { n! }{ 5! (n -5)! } $$
    $$ => 3 ! \times (n - 3) \times (n - 4) \times (n-5) ! = 5 \times 4 \times 3 ! \times (n-5)! $$
    $$ => (n - 3) \times (n - 4) = 5 \times 4 $$

    From this, $$ n - 3 = 5 $$
    $$ => n = 8 $$
     
  • Question 7
    1 / -0
    If $$ { _{  }^{ n }{ C } }_{ 4 },{ _{  }^{ n }{ C } }_{ 5 }$$ and $$ { _{  }^{ n }{ C } }_{ 6 }$$ are in AP, then $$n$$ is
    Solution
    $$\textbf{Step 1: Find the value of n}$$

                    $$\text{If a,b,c are in A.P,then}$$

                    $$2b=a+c$$

                    $$\text{So applying the same conditions, we have}$$

                    $$\Rightarrow$$ $$2 \times\left({ }^{n} c_{5}\right)=\left({ }^{n} C_{6}\right)+\left({ }^{n} C_{4}\right)$$

                    $$\text{We know that,}$$

                    $${ }^{n} C_{r} = \dfrac{ n !}{r !(n-r) !}$$

                    $$\Rightarrow$$$$\dfrac{2 \times n !}{5 !(n-5) !}=\dfrac{n !}{6 !(n-6) !}+\dfrac{n !}{4 !(n-4) !}$$

                    $$\Rightarrow \dfrac{2}{5 !(n-5) !}=\dfrac{1}{6(n-6) !}+\dfrac{1}{4 !(n-4) !} $$         

                    $$\Rightarrow \dfrac{2}{5 !(n-5)(n-6) !}=\dfrac{1}{6 !(n-6) !}+\dfrac{1}{4 !(n-4)(n-5)(n-6)!} $$

                    $$ \Rightarrow \dfrac{2}{5 !(n-5)}=\dfrac{1}{6 !}+\dfrac{1}{4 !(n-4)(n-5)} $$               

                    $$\Rightarrow \dfrac{2}{5 \times 4 ! \times(n-5)}=\dfrac{1}{6 \times 5 \times 4 !}+\dfrac{1}{4 !(n-4)(n-5)} $$

                    $$=\dfrac{2}{5 \times(n-5)}=\dfrac{1}{6 \times 5}+\dfrac{1}{(n-4)(n-5)}$$                  

                    $$\Rightarrow \dfrac{2}{5 \times(n-5)}-\dfrac{1}{(n-4)(n-5)}=\dfrac{1}{6 \times 5}$$      

                    $$\Rightarrow 12 n-78=n^{2}-9 n+20$$

                    $$\Rightarrow n^2-21n+98=0$$

                    $$\Rightarrow (n-7)(n-14)=0$$

                    $$\therefore n=14$$ $$\text{(or)}$$ $$n=7$$

    $$\textbf{Hence, option A is correct.}$$
  • Question 8
    1 / -0
    If $$^{19}C_r$$ and $$^{19}C_{r-1}$$ are in the ratio 2:3, then find $$^{14}C_r$$
    Solution
    We know that, $$ { { n }_{ C } }_{ r }=\dfrac { n! }{ r!(n-r)! } $$

    Given, $$ \dfrac { { { 19 }_{ C } }_{ r } }{ { { 19 }_{ C } }_{ r-1 } } =\quad \dfrac { 2 }{ 3 } $$

    $$ =>\dfrac { \dfrac { 19! }{ r!(19-r)! }  }{ \dfrac { 19! }{ (r-1)!(19-r+1)! }  } =\quad \dfrac { 2 }{ 3 } $$

    $$ => \dfrac { (r-1)!(20-r)! }{ r!(19-r)! } =\quad \dfrac { 2 }{ 3 } $$

    $$ =\dfrac { (r-1)!\times (20-r) \times (19-r)! }{ r\quad \times (r-1)!\times (19-r)! } =\quad \dfrac { 2 }{ 3 } $$
    $$ => \dfrac { 20-r }{ r\quad  } =\quad \dfrac { 2 }{ 3 } $$
    $$ => r = 12 $$

    So,
    $$ { { 14 }_{ C } }_{ 12 }=\dfrac { 14! }{ 12!(14-12)! } =\dfrac { 14! }{ 12!(2)! } =\dfrac { 14\times 13\times 12! }{ 12!\times 2 } =\quad 7\times 13=91 $$
  • Question 9
    1 / -0
    A bag contains n white and n black balls. Pairs of balls are drawn at random without replacement successively, until the bag is empty. If the number of ways in which each pair consists of one white and one black ball is 14,400. then n =
    Solution
    According to the given condition:

    $$(^nC_1\ ^nC_1)$$$$(^{n-1}C_1\ ^{n-1}C_1)..........$$$$(^1C_1\ ^1C_1)=14400$$

    $$\Rightarrow (^nC^{n-1}C_1.......\ ^1C_1)^2=(120)^2$$

    $$\Rightarrow n(n-1)(n-2)....\ 1=120$$

    $$\Rightarrow n!=5!$$

    $$\Rightarrow n=5$$
  • Question 10
    1 / -0
    Three persons entered a railway compartment in which $$5$$ seats were vacant. Find the number of ways in which they can be seated
    Solution
    The first person can choose to sit in any of the $$ 5 $$ seats in $$ 5 $$ ways.

    Then the second person can choose to sit in any of the remaining $$ 4 $$ seats in $$ 4 $$ ways.

    Lastly, the third person can choose to sit in any of the remaining $$ 3 $$ seats in $$ 3 $$ ways.

    So, total number of ways $$ = 5 \times 4 \times 3 = 60 $$ ways
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now