Self Studies

Permutations and Combinations Test 47

Result Self Studies

Permutations and Combinations Test 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\sum^{10}_{r=0}\begin{pmatrix}10\\r\end{pmatrix}\begin{pmatrix}15\\14-r\end{pmatrix}$$ is equal to
    Solution

  • Question 2
    1 / -0
    Two lines intersect at $$O$$. Points $$A_{i}$$ and $$B_{i} (i = 1, 2, ...., n)$$ are taken on these two lines respectively, the number of triangles that can be drawn with the help of these $$2n + 1$$ points is
    Solution
    Number of triangles $$=$$ Taking any two points in $$B_{1}, B_{2}, ..., B_{n}$$ and one point from $$A_{1}, A_{2}, ...., A_{n}$$ or taking any two points from $$A_{1}, A_{2}, A_{3}, ....A_{n}$$ and one point from $$B_{1}, B_{2}, ..., B_{n}$$ or one point $$O$$ and one point from $$A_{1}, A_{2} ....A_{n}$$ and one point from $$B_{1}, B_{2}, ..., B_{n}$$
    $$\therefore$$ Required ways
    $$= ^{n}C_{2}\times ^{n}C_{1} + ^{n}C_{1}\cdot ^{n}C_{2} + ^{n}C_{1} \times ^{n}C_{1} \times 1$$
    $$= \dfrac {n^{2}(n - 1){2}} + \dfrac {n^{2}(n - 1)}{2} + n^{2}$$
    $$= (n^{2}(n - 1) + n^{2}(n - 1) + 2n^{2})/2$$
    $$= n^{2} [2n - 2 + 2]/2 = n^{3}$$

  • Question 3
    1 / -0
    Value of $$\sum _{ k=0 }^{ n }{ { _{  }^{ k }{ C } }_{ n }\sin { \left( kx \right)  } \cos { \left( n-k \right)  }  } $$ is
    Solution

  • Question 4
    1 / -0
    In a triangle $$ABC$$, the value of the expression $$\displaystyle \sum_{r = 0}^{n}\ ^{n}C_{r}a^{r}.b^{n - r}.\cos (rB - (n - r)A)$$ is equal to
    Solution

  • Question 5
    1 / -0
    Seven person $$P_1,P_2......, P_7$$ initially seated at chairs $$C_1,C_2,.....C_7$$ respectively.They all left there chairs simultaneously for hand wash. Now in how many ways they can again take seats such that no one sits on his own seat and $$P_1$$, sits on $$C_2$$ and $$P_2$$ sits on $$C_3$$ ?
    Solution

  • Question 6
    1 / -0
    If $$m$$ denotes the number of $$5$$ digit numbers if each successive digits are in their descending order of magnitude and $$n$$ is the corresponding figure. When the digits and in their ascending order of magnitude then $$(m-n)$$ has the value
    Solution

    $$  {\textbf{Step 1: Find m}} $$

                    $$  {\text{For m,}} $$

                    $$  {\text{First we select any 5 digits from 0,1,2,}}...{\text{,9}} $$

                    $$  {\text{Number of ways = }}{}^{10}{{\text{C}}_5} $$

                    $$  {\text{Now after selection there is only 1 way to arrange these selected digits, i}}{\text{.e}}{\text{., in descending order}}{\text{.}} $$

                    $$  {\text{Therefore m = }}{}^{10}{{\text{C}}_5}\times{\text{  1 = }}{}^{10}{{\text{C}}_5} $$

    $$  {\textbf{Step 2: Find n}} $$

                    $$  {\text{For n,First we select any 5 digits from 1,2,}}...{\text{,9}} $$

                    $$  {\text{We can't select zero as  first digit because then the number won't be a 5 - digit number}}{\text{.}} $$

                    $$  {\text{Therefore number of ways  = }}{}^9{{\text{C}}_5} $$

                    $$   \Rightarrow {\text{n = }}{}^9{{\text{C}}_5}\times{\text{  1 = }}{}^9{{\text{C}}_5} $$

                    $$   \Rightarrow {\text{m - n = }}{}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5} $$ 

                    $$  {\text{We know that,}}{}^n{{\text{C}}_r}{\text{ + }}{}^n{{\text{C}}_{r - 1}}{\text{ = }}{}^{n + 1}{{\text{C}}_r} $$

                    $$   \Rightarrow {}^{n + 1}{{\text{C}}_r}{\text{ - }}{}^n{{\text{C}}_r}{\text{ = }}{}^n{{\text{C}}_{r - 1}} $$

                    $$   \Rightarrow {}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5}{\text{ = }}{}^9{{\text{C}}_4} $$

                    $$  {\text{Hence, m - n = }}{}^9{{\text{C}}_4} $$

    $$  {\textbf{Hence, the correct answer is option A}} $$

     

  • Question 7
    1 / -0
    There are $$2$$ identical white balls, $$3$$ identical red balls and $$4$$ green balls of different shades. The number of ways in which they can be arranged in a row so that atleast one ball is separated from the balls of the same colour, is
    Solution
    These are totally $$9$$ balls of which $$2$$ are identical of one kind, $$3$$ are a like of another kind $$and$$ $$4$$ district ones.

    At least one ball of same color separated $$=$$ Total $$-$$ No ball of same color is separated
    Total permutation $$=\dfrac{9!}{2!3!}$$

    For no ball is separated : we consider all balls of same color as $$1$$ entity, so there are $$3$$ entities which can be placed in $$3!$$ ways.

    The white and red balls are identical so they will be placed in $$1$$ way whereas green balls are different so they can be placed in $$4!$$ ways
    $$\Rightarrow Req=3!\times 4!$$

    At least one ball is separated $$=\dfrac{9!}{2!3!}-3!4!$$

                                                      $$=\dfrac{9\times 8\times 7!}{2\times 6}-6\times 4!$$
                                                    
                                                      $$=6\left(7!\right)-6\left(\times 4!\right) $$

                                                      $$=6\left( 7!-4!\right ).$$

    Hence, the answer is $$6\left( 7!-4!\right ).$$
  • Question 8
    1 / -0
    Two classrooms A and B having capacity of $$25$$ and $$(n-25)$$ seats respectively. $$A_n$$ denotes the number of possible seating arrangements of room $$'A'$$, when 'n' students are to be seated in these rooms, starting from room $$'A'$$ which is to be filled up to its capacity. If $$A_n-A_{n-1}=25!(^{49}C_{25})$$ then 'n' equals:
    Solution
    Given $$A_n=nC_{25} \cdot 25!$$

    $$A_{n-1}={n-1}C_{25} \cdot 25!$$

    Hence $$nC_{25} \cdot 25! - (n-1)C_{25} \cdot 25!=25! 49C_{25}$$

    $$\Rightarrow (n-1)C_{25}+(n-1)C_{24}-(n-1)C_{25}=49C_{24}$$

    $$\Rightarrow n-1=49$$

    $$\Rightarrow n=50$$
  • Question 9
    1 / -0
    If $$\displaystyle \sum_{k = 1}^{n = 1} \ ^{n - k}C_{r} = ^{x}C_{y}$$ then
    Solution

  • Question 10
    1 / -0
    If $${ \left( 1+x \right)  }^{ n }=\sum _{ r=0 }^{ n }{ { a }_{ r }{ x }^{ r } } $$ and $${ b }_{ r }=1+\cfrac { { a }_{ r } }{ { a }_{ r-1 } } $$ and $$\prod _{ r=1 }^{ n }{ { b }_{ r }=\cfrac { { \left( 101 \right)  }^{ 100 } }{ 100! }  } $$, then $$n$$ equals to:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now