Given $$^{2017}C_{0}+\, ^{2017}C_{1}+\, ^{2017}C_{2}+….+\, ^{2017}C_{1008}= \lambda^{2}$$ $$(\lambda > 0)$$
$$\Rightarrow \displaystyle \sum^{1008}_{k=0}$$ $$^{2017}C_{k}= \lambda^{2}$$
He we know that,
$$\displaystyle \sum^{n}_{k=0}$$ $$^{n}C_{k}=2^{n}$$
$$\displaystyle \therefore \sum_{k=0}^{2017}$$ $$^{2017}C_{k}=2^{2017}$$
$$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$ ^{2017}C_k$$ $$+\sum_{k=1009}^{2017}$$ $$^{2017}C_{k}=2^{2017}$$
$$\Rightarrow \displaystyle \sum_{k}^{1018}$$ $$^{2017}C_{k}+$$ $$^{2017}C_{1009}$$ $$+$$ $$^{2017}C_{1010}+…..+$$ $$^{2017}C_{2017}=2^{2017}$$
$$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$^{2017}C_{k}+$$ $$^{2017}C_{1008}+$$ $$^{2017}C_{1007}+…….+$$ $$^{2017}C_{0}=2^{2017}$$
$$[using\ ^{m}C_{r}=^{m}C_{m-r}]$$
$$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$^{2017}C_{k} $$ $$+ \displaystyle \sum_{1008}^{k=0}$$ $$^{2017}C_{k}= 2^{2017}$$
$$ \Rightarrow \displaystyle 2 \sum_{k=0}^{1008}$$ $$^{2017}C_{k}=2^{2017}$$
$$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$^{2017}C_{k}=2^{2016}$$
$$\Rightarrow\displaystyle \sum_{k=0}^{1008}$$ $$^{2017}C_{k}= (2^{1008})^{2}$$
$$\therefore$$ $$\lambda=2^{1008}$$
$$\lambda=2^{1008}$$
$$\lambda=2^{3}.2^{1005}$$
$$=2^{3} (2^{5})^{201}$$
$$=2^{3} (32)^{201}$$
$$=2^{3} (33-1)^{201}$$ [using binomial theorem ]
$$=8[^{201}C_{0} (33)^{201}+\, ^{201}C_{1} (33)^{200} (-1)+\, ^{201}C_{2} (33)^{199} (-1)^{2}+…..+\, ^{201}C_{201} (-1)^{201}]$$
$$=8[(33)^{201}+201 (33)^{200} (-1)+\, ^{201}C_{2} (33)^{199} (-1)^{2}+….+(-1)^{201}]$$
$$=[8 (33)^{201}+8.201 (300)^{200} (-1)+ 8\times ^{201}C_{2} (33)^{199} (-1)^{2}+….-8]$$
When $$\lambda$$ is divided by $$33$$ then the remainder is $$-8$$ which is negative we can also write the remainder as $$33-8=25$$