Self Studies

Permutations and Combinations Test 50

Result Self Studies

Permutations and Combinations Test 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $${ if }^{ n }{ c }_{ r }{ + }^{ n }{ c }_{ r+1 }={ n+1 }_{ { C }_{ x } }$$ then the value of x is equal to
  • Question 2
    1 / -0
    The value of $$\sum _{ r=0 }^{ n }{ \sum _{ s=0 }^{ n }{ (r+s){ C }_{ r }{ C }_{ s } }  } ,$$ is 
    Solution

  • Question 3
    1 / -0
    If $$n\ \in\ N$$ & $$n$$ is even, then $$\dfrac {1}{1\ .\ (n-1)\ !}+\dfrac {1}{3\ !(n-3)\ !}+\dfrac {1}{5\ !\  (n-5)\ !}+....+\dfrac {1}{(n-1)\ !\ 1\ !}=$$ 
    Solution

  • Question 4
    1 / -0
    $${ if } ^ { n }{ C }_{ 3 }{ + }^{ n }{ C }_{ 4 }>{ n+1 }_{ C_{ 3 } }$$ then
  • Question 5
    1 / -0
    if$$^{ 2017 }{ c }_{ 0 }{ + }^{ 2017 }{ c }_{ 1 }{ + }^{ 2017 }{ c }_{ 2 }+.....{ + }^{ 2017 }{ c }_{ 1008 }={ \lambda  }^{ 2 }(\lambda >0),$$ then remainder when $$\lambda$$ is divided by 33 is
    Solution
    Given $$^{2017}C_{0}+\, ^{2017}C_{1}+\, ^{2017}C_{2}+….+\, ^{2017}C_{1008}= \lambda^{2}$$ $$(\lambda > 0)$$
    $$\Rightarrow \displaystyle \sum^{1008}_{k=0}$$  $$^{2017}C_{k}= \lambda^{2}$$
    He we know that,
    $$\displaystyle \sum^{n}_{k=0}$$ $$^{n}C_{k}=2^{n}$$
    $$\displaystyle \therefore \sum_{k=0}^{2017}$$ $$^{2017}C_{k}=2^{2017}$$
    $$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$ ^{2017}C_k$$ $$+\sum_{k=1009}^{2017}$$ $$^{2017}C_{k}=2^{2017}$$
    $$\Rightarrow \displaystyle \sum_{k}^{1018}$$ $$^{2017}C_{k}+$$ $$^{2017}C_{1009}$$ $$+$$ $$^{2017}C_{1010}+…..+$$ $$^{2017}C_{2017}=2^{2017}$$
    $$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$^{2017}C_{k}+$$ $$^{2017}C_{1008}+$$ $$^{2017}C_{1007}+…….+$$ $$^{2017}C_{0}=2^{2017}$$
    $$[using\ ^{m}C_{r}=^{m}C_{m-r}]$$
    $$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$^{2017}C_{k} $$ $$+ \displaystyle \sum_{1008}^{k=0}$$ $$^{2017}C_{k}= 2^{2017}$$
    $$ \Rightarrow \displaystyle 2 \sum_{k=0}^{1008}$$ $$^{2017}C_{k}=2^{2017}$$
    $$\Rightarrow \displaystyle \sum_{k=0}^{1008}$$ $$^{2017}C_{k}=2^{2016}$$
    $$\Rightarrow\displaystyle  \sum_{k=0}^{1008}$$ $$^{2017}C_{k}= (2^{1008})^{2}$$
    $$\therefore$$ $$\lambda=2^{1008}$$
    $$\lambda=2^{1008}$$
    $$\lambda=2^{3}.2^{1005}$$
    $$=2^{3} (2^{5})^{201}$$
    $$=2^{3} (32)^{201}$$
    $$=2^{3} (33-1)^{201}$$ [using binomial theorem ]
    $$=8[^{201}C_{0} (33)^{201}+\, ^{201}C_{1} (33)^{200} (-1)+\, ^{201}C_{2} (33)^{199} (-1)^{2}+…..+\, ^{201}C_{201} (-1)^{201}]$$
    $$=8[(33)^{201}+201 (33)^{200} (-1)+\, ^{201}C_{2} (33)^{199} (-1)^{2}+….+(-1)^{201}]$$
    $$=[8 (33)^{201}+8.201 (300)^{200} (-1)+ 8\times ^{201}C_{2} (33)^{199} (-1)^{2}+….-8]$$
    When $$\lambda$$ is divided by $$33$$ then the remainder is $$-8$$ which is negative we can also write the remainder as $$33-8=25$$
  • Question 6
    1 / -0
    Value of $$\sum _{ r=1 }^{ n }{ \left( \sum _{ m=0 }^{ r }{ {  }_{  } }  \right)  } ^nC_r,^rC_m)$$ is equal to 
    Solution

  • Question 7
    1 / -0
    If $$(1+x)^n=C_0+C_1x+C_2x^2+....+C_nX^n$$, then the value of $$C^2_0+\dfrac{C^2_1}{2}+\dfrac{C^2_2}{3}+....+\dfrac{C^2_n}{n+1}$$ is equal to?
    Solution

  • Question 8
    1 / -0
    If $$(1+x)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+...+C_{n}x^{n}$$ then the value of $$1^{2}C_{1}+2^{2}C_{2}+3^{2}C_{3}+...+n^{2}C_{n}$$ is
    Solution

  • Question 9
    1 / -0
    The value of $${^{50}C_4}+\sum^6_{r=1}{^{56-r}C_3}$$ is?
    Solution

  • Question 10
    1 / -0
    If n is odd natural number, then $$\sum _{ r=0 }^{ n }{ \cfrac { { (-1) }^{ r } }{ ^{ n }{ C }_{ r } }  } $$ equals
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now