Self Studies

Permutations and Combinations Test 52

Result Self Studies

Permutations and Combinations Test 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$(1+x)^{15}=C_{0}+C_{1}xC_{2}x^{2}+...+C_{15}x^{15},$$ then $$^{15}C_{0}^{2}- ^{15}C_{1}^{2}+^{15}C_{2}^{2}- ^{15}C_{2}^{3}+... ^{15}C_{15}^{2}$$ is equal to
    Solution

  • Question 2
    1 / -0
    How many different $$5$$ letter sequences can be made using the letters $$A,B,C,D$$ with repetition such that the sequence does not include the word $$BAD$$?
    Solution

  • Question 3
    1 / -0
    If $$^{n}C_{1}=^{n}C_{2}$$, then $$n$$ is equal to 
    Solution

  • Question 4
    1 / -0
    $${ C }_{ 0 }+({ C }_{ 0 }+{ C }_{ 1 })+({ C }_{ 0 }+{ C }_{ 1 }+{ C }_{ 2 })+......+({ C }_{ 0 }+{ C }_{ 1 }+........+{ C }_{ n })=$$
    Solution

  • Question 5
    1 / -0
    If $$^{n}C_{r}=\dfrac {n\ !}{r\ !(n-r)\ !}$$ then the sum of the series $$1+^{n}C_{1}+^{n+1}C_{2}+^{n+2}C_{3}+.....+^{n+r-1}C_{r}$$ is equal to
    Solution

  • Question 6
    1 / -0
    If the second term of the expansion $$\left[a^{1/13}+\dfrac{a}{\sqrt{a^{-1}}}\right]^n$$ is $$14a^{5/2}$$ then the value of $$\dfrac{^{n}C_3}{^{n}C_2}$$ is
    Solution
    2nd Term $$= ^nC_1(a^{1/13})^{(n-1)} \left ( \frac{a}{\sqrt{a-1}} \right )^1=14 a^{5/2}$$

    $$\Rightarrow n\,\,\, a^{\tfrac{n-1}{13}}.a^{3/2}= 14a^{5/2}$$

    $$\Rightarrow $$ Comparing both sides

    $$\Rightarrow \dfrac{n-1}{13}+\dfrac{3}{2}=\dfrac{5}{2}$$

    $$\Rightarrow \dfrac{n-1}{13}=1\Rightarrow n-1=13$$

    $$\Rightarrow n=14$$

    $$\dfrac{^nC_3}{^nC_2}\Rightarrow \dfrac{\dfrac{n!}{3!(n-3)!}}{\dfrac{n!}{2!(n-2)!}}=\dfrac {2!(n-2)!n!} {n!3!(n-3)!}$$

    $$\Rightarrow \dfrac {2!12!}{3! 11!}=\dfrac {12}{3}=4$$ 
  • Question 7
    1 / -0
    If $$\dfrac{c_0}{2}-\dfrac{c_1}{3}+\dfrac{c_2}{4}-.....+(-1)^n\dfrac{c_n}{n+2}=\dfrac{1}{2013\times2014}$$ then n =
  • Question 8
    1 / -0
    $$\sum _{ r=0 }^{ n }{ r\left( n-r \right) \left( _{  }^{ n }{ { C }_{ r } } \right) ^{ 2 } } $$ is equal to 
    Solution

  • Question 9
    1 / -0
    The value $$\sum _{ r=0 }^{ 10 }{ r_{  }^{ 10 }{ C_{ r } } } .{ \left( -2 \right)  }^{ 10-r }$$ is
    Solution

  • Question 10
    1 / -0
    If $$^{50}C_{r}=C_{r}$$ then the value of $$C_{0}^{2}+\frac{1}{2}C_{1}^{2}+\frac{1}{3}C_{2}^{2}+\frac{1}{4}C_{3}^{2+....+\frac{1}{50}^{101}C_{51}}$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now