Self Studies

Permutations and Combinations Test 53

Result Self Studies

Permutations and Combinations Test 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    2. $$^n$$C$$_0$$ + 2$$^2$$ . $$\dfrac{^nC_1}{2}$$ + 2$$^3$$ . $$\dfrac{^nC_2}{3}$$ +.......+ 2$${n + 1}$$ . $$\dfrac{^nC_n}{n + 1}$$ = 
    Solution

  • Question 2
    1 / -0
    If $$(1+x)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+...+C_{n}x^{n}$$, then the value of $$C_{0}^{2}+\dfrac{C_{1}^{2}}{2}+\dfrac{C_{2}^{2}}{2}+.........+\dfrac{C_{n}^{2}}{n+1}$$ is 
    Solution

  • Question 3
    1 / -0
    The sum $$\sum _{ r=1 }^{ n }{ r.{  }^{ 2n }{ C }_{ r } } $$ is equal to.
    Solution

  • Question 4
    1 / -0
    The number of ways in which three girls and ten boys can be seated in two vans, each having numbered seats, three in the front and four at the back is
    Solution

  • Question 5
    1 / -0
    The total no. of six digit numbers $${ x }_{ 1 }{ x }_{ 2 }{ x }_{ 3 }{ x }_{ 4 }{ x }_{ 5 }{ x }_{ 6 }$$ having the property $${ x }_{ 1 }<{ x }_{ 2 }\le { x }_{ 3 }<{ x }_{ 4 }<{ x }_{ 5 }\le { x }_{ 6 }$$, is equal to
    Solution

  • Question 6
    1 / -0
    If $$^nC_r$$ denotes the number of combinations of n things taken r things at a time, then the expression $$^nC_{r+1} + ^nC_{r-1}+2 ^nC_r is$$
    Solution

  • Question 7
    1 / -0
    If $$^{ n }{ C }_{ 3 }=^{ n }{ C }_{ 2 }$$, then n is equal to
  • Question 8
    1 / -0
    $$If\,a\, = {\,^m}{C_2},\,\,then{\,^a}{C_{2\,}}\,is\,equal\,to$$
    Solution

  • Question 9
    1 / -0
    $$\dfrac { { C }_{ 1 } }{ { C }_{ 0 } } +\dfrac { 2{ C }_{ 2 } }{ { C }_{ 1 } } +...\dfrac { 3{ C }_{ 3 } }{ { C }_{ n-1 } } =$$
    Solution

  • Question 10
    1 / -0
    If $$\sum\limits_{r = 0}^n {\left( {\frac{{r + 2}}{{r + 1}}} \right)} \,{\,^n}{C_r} = \frac{{{2^8} - 1}}{6},$$ then 'n' is 

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now