Self Studies

Sequences and Series Test - 10

Result Self Studies

Sequences and Series Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\displaystyle \sum_{r = 16}^{30}{ (r + 2)(r - 3) } $$ is equal to :
    Solution
    Let  $$S= \displaystyle \sum_{r = 16}^{30}{ (r + 2)(r - 3) } =\displaystyle \sum_{r = 1}^{30}{ (r + 2)(r - 3) } -\sum_{r = 1}^{15}{ (r + 2)(r - 3) }$$

               $$                         = \displaystyle \sum_{r = 1}^{30}{ (r^2-r -6) } -\sum_{r = 1}^{15}{ (r^2 -r - 6) }$$

    [By using   $$  \sum_{i=1}^{n} k^2 =1^2 + 2^2 + 3^2 +… + n^2=\dfrac{n(n+1)(2n+1)}{6}$$]

     $$                         = \displaystyle \left( \frac{r(r+1)(2r+1)}{6}-\frac{r(r+1)}{2} -6r\right)_{r=30} -\left( \frac{r(r+1)(2r+1)}{6}-\frac{r(r+1)}{2} -6r\right)_{r=15}$$

     $$                         = \displaystyle \left( \frac{30(30+1)(60+1)}{6}-\frac{30(30+1)}{2} -180\right) -\left( \frac{15(15+1)(30+1)}{6}-\frac{15(15+1)}{2} -90\right)$$
          
      $$=7780$$
  • Question 2
    1 / -0
    The sum of the following series $$1+6+\dfrac{9(1^2+2^2+3^2)}{7}+\dfrac{12(1^2+2^2+3^2+4^2)}{9}+\dfrac{15(1^2+2^2+....+5^2)}{11}+.....$$ up to $$15$$ terms is:
    Solution
    $$T_n=\dfrac{(3+(n-1)\times 3)(1^2+2^2+...+n^2)}{(2n+1)}$$

    $$T_n=\dfrac{3n.\dfrac{n(n+1)(2n+1)}{6}}{2n+1}=\dfrac{n^2(n+1)}{2}$$

    $$S_{15}=\dfrac{1}{2}\displaystyle \sum_{n=1}^{15}(n^3+n^2)=\dfrac{1}{2}\left[\left(\dfrac{15(15+1)}{2}\right)^2+\dfrac{15\times 16\times 31}{6}\right]$$

    $$=7820$$
  • Question 3
    1 / -0
    Let $$A$$ be the sum of the first $$20$$ terms and $$B$$ be the sum of the first $$40$$ terms of the series $$1^{2} + 2.2^{2} + 3^{2} + 2.4^{2} + 5^{2} + 2.6^{2} + .....$$ If $$B - 2A = 100\lambda$$, then $$\lambda$$ is equal to
    Solution
    $$B=1^2+2.2^2+3^2+2.4^2+....+2.40^2$$
    $$A=1^2+2.2^2+3^2+2.4^2+.... +2.20^2$$

    $$B = 1^2+3^3+5^2+...+39^2+2 [2^2+4^2+...+40^2]$$
    $$A = 1^2+3^2+5^2+... + 19^2+2[2^2+4^2+...+20^2]$$


    Sum of square of first n odd natural number
    $$=\dfrac{n(2n+1)(2n-1)}{3}$$

    sum of square of first n even natural number
    $$=\dfrac{2n(n+1)(2n+1)}{3}$$

    $$B=\left[\dfrac{n(2n+1)(2n-1)}{3}\right]_{n=20} + 2\left[\dfrac{2n(n+1)(2n+1)}{3}\right]_{n=20}$$

    $$A=\left[\dfrac{n(2n+1)(2n-1)}{3}\right]_{n=10}+2\left[\dfrac{2n(n+1)2n+1)}{3}\right]_{n=10}$$

    $$B = \dfrac{20(41)(39)}{3} + 2\left[\dfrac{(400(21)(41)}{3}\right]$$

    $$B = \dfrac{100860}{3}$$

    $$A=\dfrac{10(21)(19)}{3}+2\left[\dfrac{20(11)(21)}{3}\right]$$

    $$A=\dfrac{13230}{3}$$

    $$B-2A = \left[\dfrac{100860-26460}{3}\right] = \dfrac{74400}{3}$$

    $$B-2A = 24800= 100\lambda$$

    $$\lambda = 248$$
  • Question 4
    1 / -0
    If the sum of the first 15 terms of the series $$\lgroup \frac{3}{4} \rgroup^3 + \lgroup 1\frac{1}{2} \rgroup^3 + \lgroup 2\frac{1}{4} \rgroup^3 + 3^3 + \lgroup 3\frac{3}{4} \rgroup^3 + ...........$$ is equal to 225 k. then k is equal to:
    Solution
    $$\lgroup \dfrac{3}{4} \rgroup^3 + \lgroup \dfrac{6}{4} \rgroup^3 + \lgroup \dfrac{9}{4} \rgroup^3 +  \lgroup \dfrac{12}{4} \rgroup^3 + .............. 15$$ term

    $$S=\displaystyle\sum_{r=1}^{15}\left [\dfrac{3r}{4}\right ]^3=\dfrac{27}{64}\sum r^3$$

    $$=\displaystyle\dfrac{27}{64} \sum_{r = 1}^{15} r^3$$

    $$ = \dfrac{27}{64}. \Big[ \dfrac{15(15+1)}{2} \Big ]^2$$

    $$= 27\times 225$$ (given in question)

    $$K = 27$$
  • Question 5
    1 / -0
    Let  $$S _ { k } = \dfrac { 1 + 2 + 3 + \ldots + k } { k } .$$  If   $${ S }_{ { 1 } }^{ { 2 } }+{ S }_{ { 2 } }^{ { 2 } }++{ S }_{ { 10 } }^{ { 2 } }=\dfrac { 5 }{ 12 } { A }$$  then  $$A$$  is equal to :
    Solution
    $$\mathrm { S } _ { \mathrm { K } } = \dfrac { \mathrm { K } + 1 } { 2 }$$

    $$\Sigma S _ { k } ^ { 2 } = \dfrac { 5 } { 12 } A$$

    $$\sum _ { \mathrm { k } = 1 } ^ { 10 } \left( \dfrac { \mathrm { K } + 1 } { 2 } \right) ^ { 2 } = \dfrac { 2 ^ { 2 } + 3 ^ { 2 } + \dots  + 11 ^ { 2 } } { 4 } = \dfrac { 5 } { 12 } \mathrm { A }$$

    $$\dfrac { 11 \times 12 \times 23 } { 6 } - 1 = \dfrac { 5 } { 3 } \mathrm { A }$$

    $$505 = \dfrac { 5 } { 3 } \mathrm { A } , \quad \mathrm { A } = 303$$

  • Question 6
    1 / -0
    The sum $$\mathrm{V}_{1}+\mathrm{V}_{2}+\ldots+\mathrm{V}_{\mathrm{n}}$$ is 

    Solution
    $$\displaystyle \mathrm{V}_{\mathrm{r}}=\frac{\mathrm{r}}{2}[2\mathrm{r}+(\mathrm{r}-1)(2\mathrm{r}-1)]=\frac{1}{2}(2\mathrm{r}^{3}-\mathrm{r}^{2}+\mathrm{r}) $$
    $$\therefore \displaystyle \sum \mathrm{V}_{\mathrm{r}}=\frac{1}{2}\left(2 \sum r^3-\sum r^2+\sum r\right)=\frac{1}{12}\mathrm{n}(\mathrm{n}+1)(3\mathrm{n}^{2}+\mathrm{n}+2)$$ .
  • Question 7
    1 / -0

    Let $$\mathrm{a}_{1},\ \mathrm{a}_{2},\ \mathrm{a}_{3},\ \ldots,\ \mathrm{a}_{11}$$ be real numbers satisfying $$\mathrm{a}_{1}=15,27-2\mathrm{a}_{2}>0$$ and $$\mathrm{a}_{\mathrm{k}}=2\mathrm{a}_{\mathrm{k}-1}-\mathrm{a}_{\mathrm{k}-2}$$ 
    for $$\mathrm{k}=3,4,\ \ldots, 11.$$ If $$\displaystyle \frac{a_{1}^{2}+a_{2}^{2}+\ldots+a_{11}^{2}}{11}=90$$, then the value of $$\displaystyle \frac{a_{1}+a_{2}+\ldots+a_{11}}{11}$$ is equal to
    Solution
    We have: $${ a }_{ k }+{ a }_{ k+2 }=2{ a }_{ k-1 }$$
    Thus, the terms are in AP.
    Hence, sum of squares of the terms in AP is:
    $${ a }^{ 2 }+{ (a+d) }^{ 2 }+...+{ (a+10d) }^{ 2 }=11{ a }^{ 2 }+110ad+385{ d }^{ 2 }=990\\ =>a^{ 2 }+10ad+35{ d }^{ 2 }=90\\ =>35{ d }^{ 2 }+150d+225-90=0\\ =>35{ d }^{ 2 }+150d+135=0\\ =>7{ d }^{ 2 }+30d+27=0\\ =>(7d+9)(d+3)=0=>d=-3,-\dfrac { 9 }{ 7 } $$
    Since $${ a }_{ 2 }<13.5$$, $$d=-3$$
    Thus, the required answer i.e. the average of $$11$$ terms of an AP = $${ a }_{ 6 }=15+(6-1).(-3)=0$$
    Hence, (a) is correct.
  • Question 8
    1 / -0
    $$x\left (x + \dfrac {1}{x}\right )^{2} + \left (x^{2} + \dfrac {1}{x^{2}}\right )^{2} + \left (x^{3} + \dfrac {1}{x^{3}}\right )^{2}$$ .... upto $$n$$ terms is
    Solution
    The series is
    $$(x^{2} + x^{4} + x^{6} + ....) + \left (\dfrac {1}{x^{2}} + \dfrac {1}{x^{4}} + \dfrac {1}{x^{6}} + ....\right ) + (2 + 2 + ....)$$
    $$= \dfrac {x^{2}(x^{2n} - 1)}{x^{2} - 1} + \dfrac {\dfrac {1}{x^{2}}\left (1 - \dfrac {1}{x^{2n}}\right )}{1 - \dfrac {1}{x^{2}}} + 2n$$
    $$= \dfrac {x^{2}(x^{2n} - 1)}{x^{2} - 1} + \dfrac {x^{2n} - 1}{(x^{2} - 1)x^{2n}} + 2n$$
    $$= \dfrac {x^{2n} - 1}{x^{2} - 1}\times \dfrac {x^{2n + 2} + 1}{x^{2}} + 2n$$
  • Question 9
    1 / -0
    Which letter will be the fifth from the right if the first and second, the third and fourth and so on are interchanged among each other in the word "COMPANIONATE"?
    Solution
    When we interchange the first and the second, third and the fourth, and so on letters in the word COMPANIONATE, the new word becomes OCPMNAOIANET.
    Therefore, 5th letter from right is I
    Answer is Option B
  • Question 10
    1 / -0
    Mean of the first $$n$$ terms of the A.P. $$a, (a + d), (a + 2d), ........$$ is
    Solution
    Required mean $$= \displaystyle \frac{a + (a + d) + (a + 2d) + ....... + \{ a + (n - 1) d \}}{n}$$
    $$\displaystyle = \frac{\displaystyle \frac{n}{2} [a + a + (n - 1) d]}{n} = a + \frac{(n - 1)d}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now