Self Studies

Sequences and Series Test - 15

Result Self Studies

Sequences and Series Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\left(\displaystyle 1-\frac{1}{2}\right)\left(\displaystyle 1-\frac{1}{3}\right)\left(\displaystyle 1-\frac{1}{4}\right).........\left(\displaystyle 1-\frac{1}{10}\right)=$$ ___________.
    Solution
    $$\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)..........\left(1-\dfrac{1}{10}\right)$$

    $$\Rightarrow$$  $$\dfrac{1}{2}\times \dfrac{2}{3}\times \dfrac{3}{4}......\times \dfrac{8}{9}\times \dfrac{9}{10}$$

    $$\Rightarrow$$  $$\dfrac{1}{10}$$
  • Question 2
    1 / -0
    Sum $$1+3x+5{ x }^{ 2 }+7{ x }^{ 3 }+9{ x }^{ 4 }+.....$$ to infinity is $$\left( x<1 \right) $$
    Solution
    Let $$S=1+3x+5x^2+7x^3+9x^4+.......$$
    $$xS = x + 3{x^2} + 5{x^3} + 7{x^4} + 9{x^5} + .......$$
    $$S-xS = 1 + \left( {3x - x} \right) + \left( {5{x^2} - 3{x^2}} \right) + \left( {7{x^3} - 5{x^3}} \right) + \left( {9{x^4} - 7{x^4}} \right) + .......$$
    $$S(1-x)=1+2x(1+x+x^2+x^3+....)$$
    $$=1+2x \times \frac{1}{1-x}$$
    $$=\dfrac{x+1}{1-x}$$
    $$S=\dfrac{x+1}{(1-x)^2}$$
  • Question 3
    1 / -0
    $$1 \, + \, 2 \, \cdot \, 2 \, + \, 3 \, \cdot \, 2^2 \, + \, 4 \, \cdot \, 2^3 \, + \, ..... \, + \, 100 \, \cdot \, 2^{99}$$
    Solution
    Consider the given series.
    $$1+2.2+3.2^2+4.2^3+5.2^4+.......+100.2^{99}$$

    The series mentioned above is a $$A.G.P$$ series i.e arithmetic and geometric series.
    The $$n^{th}$$ term for this series will be
    $$=n.2^{n-1}$$

    Now,
    $$=\dfrac{n(n+1)}{2}.\dfrac{1.2^{n-1}}{2-1}$$

    Since, $$n=100$$

    Therefore,
    $$=\dfrac{100(100+1)}{2}.\dfrac{1.2^{100-1}}{2-1}$$
    $$=\dfrac{100(101)}{2}.{1.2^{99}}$$
    $$=50(101).2^{99}$$
    $$=5050.2^{99}$$

    Hence, this is the answer.
  • Question 4
    1 / -0
    Select the missing number from the given matrix:
    524
    447
    253
    1830?
    Solution

    In first column $$(5+4)\times 2=18$$ In second column $$(2+4)\times 5=30$$

    so in third column ans

    $$=(4+7)\times3$$

    $$=11\times 3=33.$$

  • Question 5
    1 / -0
    The two sequence of number $${1,4,16,64,.......}$$ and $${3,12,48,192,........}$$ are mixed as follows:$${1,3,4,12,16,48,64,192,.......}$$. one of the numbers in the mixed in the mixed series is $$1048576$$, then number immediately preceding is-
    Solution
    $$1,4,16,64,....\equiv 1,4,4^2,4^3,..\equiv 4^{n-1}$$

    $$3,12,48,192,... \equiv 3\times1,3\times4,3\times4^2,3\times4^3...\equiv 3\times4^{n-1}$$

    $$1,3,4,12,16,48,64,192,.. \equiv 1,3\times1,4,3\times4,4^2,3\times4^2,4^3,3\times4^3,..$$

    $$1048576=4^{10} is \space 4^{11-1}$$
    Number preceding $$3\times4^{10-1}=3.4^9$$
  • Question 6
    1 / -0
    If $$\dfrac{a-x}{px}=\dfrac{a-y}{qy}=\dfrac{a-z}{rz}$$ and $$p, q, r,$$ be in A.P. then $$x, y, z$$ are in?
    Solution
    Given $$\dfrac{a-x}{px}=\dfrac{a-y}{qy}=\dfrac{a-z}{rz}=k$$(let)

    $$\therefore p=\dfrac{a-x}{xk}, q=\dfrac{a-y}{yk}$$ and $$r=\dfrac{a-z}{zk}$$

    Given p,q,r are in A.P.   $$\therefore 2q=p+r$$
    $$\Rightarrow 2\times(\dfrac{a-y}{yk})=(\dfrac{a-x}{xk})+(\dfrac{a-z}{zk})$$
    $$\Rightarrow 2\times(\dfrac{a-y}{y})=(\dfrac{a-x}{x})+(\dfrac{a-z}{z})$$
    $$\Rightarrow 2\times(\dfrac{a}{y}-1)=\dfrac{a}{x}-1+\dfrac{a}{z}-1$$
    $$\Rightarrow \dfrac{2a}{y}-2=\dfrac{a}{x}+\dfrac{a}{z}-2$$
    $$\Rightarrow \dfrac{2a}{y}=\dfrac{a}{x}+\dfrac{a}{z}$$
    $$\Rightarrow \dfrac{2}{y}=\dfrac{1}{x}+\dfrac{1}{z}$$
    $$\therefore x,y,z $$ are in H.P.


  • Question 7
    1 / -0
    What is the next term of the AP $$\sqrt{2}, \sqrt{8}, \sqrt{18},$$ ____?
    Solution
    We are given a series : $$ \sqrt{2},\sqrt{8},\sqrt{18} $$
    $$ a = \sqrt{2} $$
    $$ a + d = \sqrt{8} = \sqrt{4.2} = 2\sqrt{2} $$
    so, $$ d = 2\sqrt{2} - \sqrt{2} = \sqrt{2} $$
    so, $$ 4^{th} $$ term will be 
    $$ a+3d = \sqrt{2} + 3\sqrt{2} = 4\sqrt{2} $$
    $$ a+3d= \sqrt{4^{2}.2} = \sqrt{16.2} = \sqrt{32} $$
    so, the next term will be $$ \sqrt{32} $$

  • Question 8
    1 / -0
    $$A$$ is twice as fast as $$B$$ is thrice as fast as $$C$$. The journey covered by $$C$$ in $$42$$ minutes, what will be covered by $$A$$ is 
    Solution
    time taken ny C to complete the journey $$=$$ 42 minutes
    time taken by A to complete the journey $$=\dfrac{42}{2}$$ minutes      ($$\because $$ A is twice as fast as C) 
                                                                         $$=21 $$ minutes.
  • Question 9
    1 / -0
    The sum of the infinite series $$1+\left ( 1+\dfrac{1}{5} \right )\left ( \dfrac{1}{2} \right )+\left ( 1+\dfrac{1}{5}+\dfrac{1}{5^2} \right )\left ( \dfrac{1}{2^2} \right )+.......$$
    Solution
    Let $$\displaystyle S= 1+(1+\frac{1}{5})(\frac{1}{2})+(1+\frac{1}{5}+\frac{1}{5^{2}})(\frac{1}{2^{2}})+...$$

    $$\displaystyle \Rightarrow \frac{S}{2}= \frac{1}{2}+(1+\frac{1}{5})(\frac{1}{2^{2}})+(1+\frac{1}{5}+\frac{1}{5^{2}})(\frac{1}{2^{3}})+...$$

    $$\displaystyle S-\frac{S}{2}= 1+\frac{1}{5}(\frac{1}{2})+\frac{1}{5^{2}}(\frac{1}{2^{2}})+(\frac{1}{5^{3}})(\frac{1}{2^{3}})+...$$

    $$\displaystyle\Rightarrow \frac{S}{2}= 1+\frac{1}{10}+\frac{1}{(10)^{2}}+\frac{1}{(10)^{3}}+...$$

    $$\dfrac{S}{2}= \dfrac{1}{1-\dfrac{1}{10}}= \dfrac{10}{9}$$  [infinite G.P sum $$S=\dfrac{a}{1-r}]$$

    $$S= \dfrac{20}{9}$$

    Option A is correct
  • Question 10
    1 / -0
    The sum of the series $$\sum_{r=0}6{88} \sec r^o\cdot \sec(r+1)^o$$ is equal to
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now