Self Studies

Sequences and Series Test - 19

Result Self Studies

Sequences and Series Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$2.4+4.7+6.10+...(n-1)$$ terms
    Solution
    General term is given by $$(2k)(1+3k)$$ where $$k$$ varies from $$1$$  to $$n-1$$
    $$ \displaystyle  \sum_{k=1}^{n-1} (2k)(1+3k) = 2 \sum_{k=1}^{n-1} (k+3k^2)$$.
    Substituting the values in the formula (Note that $$n = n-1$$),
    We get $$(n)(n-1)(1+(2(n-1)+1))$$$$=2n^3-2n^2$$

  • Question 2
    1 / -0

    Directions For Questions

    Numbers can be classified into two categories depending on their divisible conditions.
    They are (i) Even numbers $$(2p) \  \forall p \epsilon N$$ (ii) odd numbers $$(2p + 1)  \ \forall p \epsilon N$$

    ...view full instructions

    $$x = (-1)^{a^1} + (-1)^{a^2} + .....(-1)^{a^{1006}}$$
    $$ y = (-1)^{a^{1007}} + (-1)^{a^{1008}} + ...+(-1)^{a^{2013}}$$
    Then which of the following is true?
    Solution
    $$ x=(-1)^{ { a }^{ 1 } }+(-1)^{ { a }^{ 2 } }+..............+(-1)^{ { a }^{ 1006 } }\\ \because \quad a\quad is\quad not\quad distinct\quad and\quad it\quad is\quad an\quad integer.\\ Let\quad us\quad take\quad a\quad as\quad even.\\ \therefore \quad { a }^{ n }\quad will\quad be\quad even\quad for\quad all\quad values\quad of\quad n.\\ \therefore \quad (-1)^{ { a }^{ n } }\quad will\quad be\quad 1\\ Total\quad number\quad of\quad terms\quad is\quad 1006.\\ \therefore \quad x=\sum _{ n=1 }^{ 1006 }{ (-1)^{ n } } =1006\\ \therefore \quad x=1006\longrightarrow an\quad even\quad number.\\ Again,\quad let\quad a\quad be\quad odd.\quad Then\quad { a }^{ n }\quad will\quad be\quad odd\quad for\quad all\quad \\ values\quad of\quad n.\\ \therefore \quad (-1)^{ { a }^{ n } }=-1\\ \therefore \quad \sum _{ n=1 }^{ 1006 }{ (-1)^{ n } } =\quad -1006\rightarrow an\quad even\quad negative\quad number.\\ Again\quad y=(-1)^{ { a }^{ 1007 } }+(-1)^{ { a }^{ 1008 } }+...................+(-1)^{ { a }^{ 2013 } }\\ As\quad per\quad the\quad previous\quad discussion\\ (-1)^{ { a }^{ n } }=1\quad in\quad case\quad a\quad is\quad even\quad and\quad \\ (-1)^{ { a }^{ n } }=\quad -1\quad in\quad case\quad a\quad is\quad odd\\ Total\quad number\quad of\quad terms=(2013-1007)+1=1007\\ Then\quad y=1007\quad in\quad case\quad a\quad is\quad even\\ \quad \quad \quad \quad \quad =-1007\quad in\quad case\quad a\quad is\quad odd\\ y\quad is\quad an\quad odd\quad number,\quad positive\quad and\quad negative\quad respectively.\\ Let\quad us\quad investigate\quad the\quad options.\\ In\quad case\quad a\quad is\quad odd\longrightarrow \left\{ x\quad is\quad even,\quad negative\\ y\quad is\quad odd,\quad negative \right\} ----(1)\\ In\quad case\quad a\quad is\quad even\longrightarrow \left\{ x\quad is\quad even,\quad positive\\ y\quad is\quad odd,\quad positive \right\} ----(2)                                                                      Option\quad A\longrightarrow (-1)^{ x }=1,\quad (-1)^{ y }=-1\longrightarrow a\quad odd.\\ a\quad even\longrightarrow (-1)^{ x }=1,\quad (-1)^{ y }=-1\\ Option\quad A\quad is\quad not\quad correct.\\ Option\quad B\longrightarrow a\quad is\quad odd\longrightarrow (-1)^{ x }=1,\quad (-1)^{ y }=-1\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad a\quad is\quad even\longrightarrow (-1)^{ x }=1,\quad (-1)^{ y }=-1\\ Option\quad B\quad is\quad correct.\\ Obviously\quad option\quad C\quad and\quad D\quad are\quad not\quad correct.\\ Answer-\quad Option\quad B\quad is\quad correct. $$
  • Question 3
    1 / -0
    Unit digit in the number $$(12357)^{655}$$ is 
    Solution

    unit digit of $$(12357)^{655}$$

    $$=$$ unit digit of $$(7^{655})=7^{4\times 163+3}=7^{4\times 143}+7^3$$

    $$=$$ unit digit is $$(1\times 3)=$$ unit digit is 3.
  • Question 4
    1 / -0
    The sum of the infinite series, $$\dfrac{1}{1.3}+\dfrac{2}{3.7}+\dfrac{3}{7.13}+\dfrac{4}{13.21}+ ..........$$ is

  • Question 5
    1 / -0
    $${2^{\frac{1}{4}}}.{4^{\frac{1}{8}}}.{8^{\frac{1}{{16}}}}....$$ to $$\infty$$ is equal to
    Solution

  • Question 6
    1 / -0
    In a class of 80 students it is found that 40 students like Tajmahal and 50 students like Charminar and 18 like both. Then the number of students who do not like neither are.
    Solution
    Given that
    Total students$$=80$$
    Students who like Tajmahal $$=40 \quad n(T)$$
    Students who like charminar$$=50 \quad n(C)$$
    Students who like both $$=18 \quad n(T\cap C)$$
    Say $$'x'$$ like neither then,
    $$80=n(T)+n(C)-n(T\cap C)+x\\ \Rightarrow 80=40+50-18+x\\ \Rightarrow x=8$$
  • Question 7
    1 / -0
    Out of nine cells of a square, one cell is left blank and in the rest of the cells, numbers are written follow some rule. Get the rule and find out the proper option for the blank cell 
    2
    72
    56
    ?
    0
    42
    12
    20
    30
    Solution
    The pattern of numbers are as followed
    $$1^2-1=0$$
    $$2^2-1=3$$
    $$3^2-3=6$$
    $$4^2-4=12$$
    $$5^2-5=20$$
    $$6^2-6=30$$
    $$7^2-7=42$$
    $$8^2-8=56$$
    $$9^2-9=72$$
  • Question 8
    1 / -0
    The value of $$\sum_{n=1}^{10}\int_{0}^{n}xdx$$ is
    Solution
    $$\displaystyle \sum_{n=1}^{10} \int_{0}^{n} x dx =  \sum_{n=1}^{10} \frac{n^{2}}{2} $$

    $$ =\displaystyle \frac{1^{2}+3^{2}+...+9^{2}}{2} + \frac{2^{2}+4^{2}+...+10^{2}}{2}$$ 

    $$ = A +B $$ 

    Now, $$ B $$ is even divided by $$2 \Rightarrow B $$ is an integer

    $$ A$$ contains $$5$$ odd terms not divided by $$2 $$

    $$ \therefore A $$ is a fraction . Thus, $$ A+B$$ is rational 

    Hence, option 'C' is correct.
  • Question 9
    1 / -0

    Directions For Questions

    Did you know that sequences were used to find some of the planets of our solar system? In $$1772$$, a German astronomer named Johann Bode discovered a pattern in the distances of the planets from the sun.
    Bode's sequence is a follows :
    Mercury $$(p_1) =0+4=4$$,        Venus $$(p_2) = 3+4=7$$
    Earth $$(p_3) = 6+4=10$$,          Mars $$(p_4) = 12+4=16$$
    Saturn $$(p_7) = 96 + 4=100$$

    ...view full instructions

    What number corresponds to the fifth missing planet ?
    Solution
    After each term starting with $$p_3$$, the number in from of 4 is twice the number in front of 4 in the preceding term.
    Thus the number for the unknown plant is $$2 \times 12 +4 =28$$
  • Question 10
    1 / -0
    Find the sum of first $$n$$ terms of the series.
    $$1^{3}+3\times2^{2}+3^{3}+3\times4^{2}+5^{3}+3\times6^{2}+....$$ If $$n$$ is even.
    Solution
    If $$n$$ is even,
    Let $$n=2m$$
    $$\therefore S=1^{3}+3.2^{2}+3^{3}+3.4^{2}+5^{3}+3.6^{2}+....+(2m-1)^{3}+3(2m)^{2}$$

    $$=\left \{ 1^{3}+3^{3}+5^{3}+...+(2m-1)^{3} \right \}+3\left \{ 2^{2}+4^{2}+6^{2}+....+(2m)^{2} \right \}$$

    $$=\sum_{r=1}^{m}(2r-1)^{3}+3.4\sum_{r=1}^{m}r^{2}$$

    $$=\sum_{r=1}^{m}\left \{ 8r^{3}-12r^{2}+6r-1 \right \}+12\sum_{r=1}^{m}r^{2}$$

    $$=8\sum_{r=1}^{m}r^{3}-12\sum_{r=1}^{m}r^{2}+6\sum_{r=1}^{m}r-\sum_{r=1}^{m}1+12 \sum_{r=1}^{m}r^{2}$$

    $$=8\sum_{r=1}^{m}r^{3}+6\sum_{r=1}^{m}r-\sum_{r=1}^{m}1$$

    $$=8.\displaystyle \frac{m^{2}(m+1)^{2}}{4}+6\displaystyle \frac{m(m+1)}{2}-m$$

    $$=2m^{2}(m+1)^{2}+3m(m+1)-m$$

    $$=m[2m^{3}+4m^{2}+5m+2]$$

    $$=\displaystyle \frac{n}{2}\left [ 2\left ( \displaystyle \frac{n}{2} \right )^{3}+4\left ( \displaystyle \frac{n}{2} \right )^{2}+5\left ( \displaystyle \frac{n}{2}\right )+2 \right ]$$  $$(\because m=\displaystyle \frac {n}{2})$$

    $$=\displaystyle \frac{n}{8}(n^{3}+4n^{2}+10n+8)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now