Self Studies

Sequences and Series Test - 20

Result Self Studies

Sequences and Series Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$S_{n}$$ denote the sum of cubes of the first $$n$$ natural numbers and $$s_{n}$$ denote the sum of the first $$n$$ natural numbers. Then $$\sum_{r=1}^{n}\dfrac{S_{r}}{S_{r}}$$ is equal to 
    Solution
    Since, $$S_{ n }$$ denote the sum of cubes of the first $$n$$ natural numbers.
    Therefore, $$S_{ n }=\dfrac { { n }^{ 2 }{ \left( n+1 \right)  }^{ 2 } }{ 4 } $$
    Since, $$s_{ n }$$ denote the sum of the first n natural numbers.
    Therefore, $$s_{ n }=\dfrac { { n }{ \left( n+1 \right)  } }{ 2 } $$

    Now, $${ T }_{ n }=\sum _{ r=1 }^{ n } \dfrac { S_{ r } }{ s_{ r } } =\sum _{ r=1 }^{ n } \dfrac { r\left( r+1 \right)  }{ 2 } $$

    $$\Rightarrow { T }_{ n }=\dfrac { 1 }{ 2 } \left\{ \sum _{ r=1 }^{ n }{ { r }^{ 2 } } +\sum _{ r=1 }^{ n } r \right\} =\dfrac { { n }{ \left( n+1 \right)  }{ \left( 2n+1 \right)  } }{ 12 } +\dfrac { { n }{ \left( n+1 \right)  } }{ 4 } $$

    $$\Rightarrow { T }_{ n }=\dfrac { n\left( n+1 \right) \left( n+2 \right)  }{ 6 } $$
  • Question 2
    1 / -0
    Let a sequence be defined by $$a_{1}= 0$$ and $$a_{n+1}= a_{n}+4n+3$$ for all $$n\geq 1 (n\epsilon N)$$

    The value of $$a_{k}$$ in terms of k is $$(k\in N)$$

    Solution
    $${ a }_{ n+1 }={ a }_{ n }+4n+3$$

    $$ { a }_{ 2 }={ a }_{ 1 }+4.1+3=7=\left( 2-1 \right) \left( 2 \cdot 2+3 \right) $$

    $$ { a }_{ 3 }={ a }_{ 2 }+4.2+3=18=\left( 3-1 \right) \left( 3 \cdot 2+3 \right) $$

    $$ { a }_{ k }=\left( k-1 \right) \left( 2k+3 \right) $$
  • Question 3
    1 / -0

    Directions For Questions

    Let ABCD is a unit square and $$0 < \alpha < 1$$. Each side of the square is divided in the ratio $$\alpha : 1-\alpha$$, as shown in figure. These points are connected to obtain another square. The sides of new square are divided in the ratio $$\alpha : 1-\alpha$$ and points are joined to obtain another square. The process is continued indefinitely. Let $$a_n$$ denote the length of side and $$A_n$$ the area of the nth square.

    ...view full instructions

    The value of $$\alpha$$ for which $$\sum_{n=1}^{\infty}A_n=\frac {8}{3}$$ is-

    Solution
    $$a_1=1, a_{n+1}^{2}=(2\alpha^2-2\alpha+1)^n$$

    $$\therefore \sum_{n=1}^{\infty}A_n=\dfrac {1}{2\alpha-2\alpha^2}=\dfrac {8}{3}$$

    $$\Rightarrow 2\alpha-2\alpha^2=3/8$$

    $$\Rightarrow 16\alpha^2-16\alpha+3=0$$

    $$\Rightarrow \alpha=1/4, 3/4$$
  • Question 4
    1 / -0
    The value of $$\sum_{r=1}^{n}\left \{ \left ( 2r-1 \right )a+\dfrac{1}{b^{r}} \right \}$$ is equal to 
    Solution
    Let $$S=\sum _{ r=1 }^{ n } \left\{ \left( 2r-1 \right) a+\dfrac { 1 }{ b^{ r } }  \right\} $$

    $$\Rightarrow S=2a\sum _{ r=1 }^{ n } r-a\sum _{ r=1 }^{ n } +\sum _{ r=1 }^{ n } \left( \dfrac { 1 }{ b^{ r } }  \right) $$

    $$\Rightarrow S=an\left( n+1 \right) -an+\dfrac { 1 }{ b } \left[ \dfrac { { \left( 1/b \right)  }^{ n }-1 }{ \left( 1/b \right) -1 }  \right] $$

    $$\Rightarrow S=a{ n }^{ 2 }+\dfrac { { b }^{ n }-1 }{ { b }^{ n }\left( b-1 \right)  } $$

    Ans: B
  • Question 5
    1 / -0
    Find the sum of the products of every pair of the first $$n$$ natural numbers.
    Solution
    We find that
    $$S=1.2+1.3+1.4+....+2.3+2.4+.......+3.4+3.5+.....+(n-1)n \cdots (1)$$
    $$\because (1+2+3+...+(n-1)+n)^{2}=1^{2}+2^{2}+3^{2}+...(n-1)^{2}+n^{2}$$
    $$+2(1.2+1.3+1.4+....+2.3+2.4+.......+3.4+3.5+.....+(n-1)n )$$    from $$(1)$$
    $$(\sum n)^{2}=\sum n^{2}+2S$$
    $$\Rightarrow S=\displaystyle \frac{(\sum n)^{2}-\sum n^{2}}{2}$$

    $$=\displaystyle \frac{\left \{ \displaystyle \frac{n(n+1)}{2} \right \}^{2}-\displaystyle \frac{n(n+1)(2n+1)}{6}}{2}$$
    $$=\displaystyle \frac { \displaystyle \frac{n^{2}(n+1)}{4}^{2}-\displaystyle \frac{n(n+1)(2n+1)}{6}}{2}$$
    $$=\displaystyle \frac{n(n+1)}{24}\left \{ 3n(n+1)+2(2n+1) \right \}$$
    $$=\displaystyle \frac{n(n+1)(3n^{2}-n-2)}{24}$$
    $$=\displaystyle \frac{(n+1)n(n-1)(3n+2)}{24}$$
  • Question 6
    1 / -0
    The numbers 1, 2, ..., 100 are arranged in the squares of an table in the following way: the numbers 1, ... , 10 are in the bottom row in increasing order,  numbers 11, ... ,20 are in the next row in increasing order, and so on. One can choose any number and two of its neighbors in two opposite directions (horizontal, vertical, or diagonal). Then either the number is increased by 2 and its neighbors are decreased by 1, or the number is decreased by 2 and its neighbors are increased by 1. After several such operations the table again contains all the numbers 1, 2, ... , 100. Prove that they are in the original order.
    Solution
    Label the table entry in the i th row and j th column by $$a_{ ij }$$
    where the bottom-left corner is in the first row and first column.
    Let  
    $$\displaystyle b_{ij}= 10(i-1)+j$$ be the number originally in the i th row and j th column. Observe that $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ 
    is invariant. Indeed, every time entries  
    $$\displaystyle a_{mn}, a_{pq}, a_{rs}$$ are changed (with m+r= 2p and n+s= 2q), P increases or decreases by $$\displaystyle b_{mn}-2b_{pq}+b_{rs},$$ 
    But this equals $$\displaystyle 10\left ( \left ( m-1 \right )+ \left ( r-1 \right )-2\left ( p-1 \right )+\left ( n+s-2q \right )\right )= 0.$$ 
    In the beginning $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$ at the end, the entires $$a_{ij}$$ equal the $$b_{ij}$$ 
    In some order,we now have $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$
    By the rearrangement inequality, this is at least  $$\displaystyle P= \sum_{i,j=1}^{10}a_{ij}b_{ij}$$
    with equality only when each  $$a_{ij}=b_{ij}$$
    The equality does occur since P is invariant. Therefore the $$a_{ij}$$ do indeed equal the $$b_{ij}$$
    in the same order, and thus the entries $$1, 2, ... , 100$$ appear in their original order.
  • Question 7
    1 / -0
    If n is an odd integer greater than or equal to 1 then the value of $$n^{3}-\left ( n-1 \right )^{3}+\left ( n-2 \right )^{3}-...+\left ( -1 \right )^{n-1}.1^{3}$$ is
    Solution
    The sequence can be written as :
    $${ S }_{ n }={ n }^{ 3 }+{ \left( n-2 \right)  }^{ 3 }+{ \left( n-4 \right)  }^{ 3 }+......+{ 1 }^{ 3 }-\left[ { \left( n-1 \right)  }^{ 3 }+{ \left( n-3 \right)  }^{ 3 }+{ \left( n-5 \right)  }^{ 3 }+....+{ 2 }^{ 3 } \right] \\ ={ n }^{ 3 }+{ \left( n-2 \right)  }^{ 3 }+{ \left( n-4 \right)  }^{ 3 }+......+{ 1 }^{ 3 }+\left[ { \left( n-1 \right)  }^{ 3 }+{ \left( n-3 \right)  }^{ 3 }+{ \left( n-5 \right)  }^{ 3 }+....+{ 2 }^{ 3 } \right] \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad -2\left[ { \left( n-1 \right)  }^{ 3 }+{ \left( n-3 \right)  }^{ 3 }+{ \left( n-5 \right)  }^{ 3 }+....+{ 2 }^{ 3 } \right] \\ =\sum _{ r=1 }^{ n }{ r^{ 3 } } -2\times { 2 }^{ 3 }\left[ { 1 }^{ 3 }+{ 2 }^{ 3 }+{ 3 }^{ 3 }+............+{ \left( \dfrac { n-1 }{ 2 }  \right)  }^{ 3 } \right] $$
    we have taken 8 common from the 2nd part of the sequence.
    $$=\sum _{ r=1 }^{ n }{ r^{ 3 } } -16\sum _{ 1 }^{ \dfrac { n-1 }{ 2 }  }{ r^{ 3 } } \\ =\left[ { \dfrac { n\left( n+1 \right)  }{ 2 }  }^{ 2 } \right] -16\left[ { \dfrac { \dfrac { n-1 }{ 2 } \left( \dfrac { n-1 }{ 2 } +1 \right)  }{ 2 }  }^{ 2 } \right] \\ ={ \dfrac { n\left( n+1 \right)  }{ 2 }  }^{ 2 }-16\left[ { \dfrac { \left( n-1 \right) \left( n+1 \right)  }{ 8 }  }^{ 2 } \right] \\ =\dfrac { { \left( n+1 \right)  }^{ 2 } }{ 4 } \left[ { n }^{ 2 }-{ \left( n-1 \right)  }^{ 2 } \right] \\ =\dfrac { { \left( n+1 \right)  }^{ 2 }\left( 2n-1 \right)  }{ 4 } $$
  • Question 8
    1 / -0
    Sum of the series $$11+23+45+87 ...$$ up to $$n$$ terms
    Solution
    Let $$S=11+23+45+87+...$$up to $$n$$ terms
    $$\Rightarrow \ S=\left( 5.2+1 \right) +\left( 5.{ 2 }^{ 2 }+3 \right) +\left( 5.{ 2 }^{ 3 }+5 \right) +\left( 5.{ 2 }^{ 4 }+7 \right) +...$$up to $$n$$ terms

    Now, $${ a }_{ n }=5{ .2 }^{ n }+2n-1$$
    Therefore, $$S=\sum _{ n=1 }^{ n }{ { a }_{ n } } =\sum _{ n=1 }^{ n }{ \left( 5{ .2 }^{ n }+2n-1 \right)  } $$
    $$\Rightarrow S=5\sum _{ n=1 }^{ n }{ { 2 }^{ n } } +2\sum _{ n=1 }^{ n }{ n } -\sum _{ n=1 }^{ n }{ 1 } =\dfrac { 5.2\left( { 2 }^{ n }-1 \right)  }{ 2-1 } +\dfrac { 2n\left( n+1 \right)  }{ 2 } -n$$
    $$\Rightarrow S=10\left( { 2 }^{ n }-1 \right) +{ n }^{ 2 }$$

  • Question 9
    1 / -0
    $$\displaystyle 1^{3}-2^{3}+3^{3}-4^{3}+...+9^{3}$$ equals
    Solution
    Let, $$S=1^{ 3 }-2^{ 3 }+3^{ 3 }-4^{ 3 }+...+9^{ 3 }$$

    $$\Rightarrow S=\left( 1^{ 3 }+3^{ 3 }+5^{ 3 }+...+9^{ 3 } \right) -\left( 2^{ 3 }+4^{ 3 }+6^{ 3 }+8^{ 3 } \right) $$

    $$\Rightarrow S=\left( 1^{ 3 }+3^{ 3 }+5^{ 3 }+...+9^{ 3 } \right) -2^{ 3 }\left( 1^{ 3 }+2^{ 3 }+3^{ 3 }+4^{ 3 } \right) $$

    $$\Rightarrow S=\sum _{ n=1 }^{ 5 }{ { \left( 2n-1 \right)  }^{ 3 } } -2^{ 3 }\sum _{ n=1 }^{ 4 }{ { n }^{ 3 } } $$

    $$\Rightarrow S=8\sum _{ n=1 }^{ 5 }{ { n }^{ 3 } } -12\sum _{ n=1 }^{ 5 }{ { n }^{ 2 } } +6\sum _{ n=1 }^{ 5 }{ { n } } -\sum _{ n=1 }^{ 5 }{ 1 } -2^{ 3 }\sum _{ n=1 }^{ 4 }{ { n }^{ 3 } } $$

    $$\Rightarrow S=8\left[ \dfrac{n^2(n+1)^2}{4}\right] -12\left[\dfrac{n(n+1)(2n+1)}{6} \right] +6\left[ \dfrac{n(n+1)}{2} \right] -5-2^{ 3 }\left[  \dfrac{n^2(n+1)^2}{4} \right] $$

    $$\Rightarrow S=8\left[ \dfrac { { 5 }^{ 2 }{ \left( 5+1 \right)  }^{ 2 } }{ 4 }  \right] -12\left[ \dfrac { 5\left( 5+1 \right) \left( 2.5+1 \right)  }{ 6 }  \right] +6\left[ \dfrac { 5\left( 5+1 \right)  }{ 2 }  \right] -5-2^{ 3 }\left[ \dfrac { 4^{ 2 }{ \left( 4+1 \right)  }^{ 2 } }{ 4 }  \right] $$

    $$\Rightarrow S=1800-660+90-5-800=425$$

    Ans: A
  • Question 10
    1 / -0
    The sum of all possible product of $$1^{st}$$ $$n$$ natural numbers taken two at a time is
    Solution
    Consider
    $$\displaystyle \left ( b_{1}+b_{2}+b_{3}+...+b_{n} \right )^{2}=b_{1}^{2}+b_{2}^{2}+...+b_{n}^{2}+2\sum_{i= j}b_ib_j $$
    taking $$\displaystyle b_{1}=1,b_{2}=2,...,b_{n}=n$$
    $$\displaystyle \therefore \left ( 1+2+3+...+n \right )^{2}=1^{2}+2^{2}+3^{2}+...+n^{2}+2\displaystyle \sum $$(Product of number taken two at a time)
    $$\Rightarrow 2 \sum{b_ib_j} \displaystyle =\left ( 1+2+3+...+n \right )^{2}-\sum_{n=1}^{n}n^{2}\displaystyle=\frac{n^{2}\left ( n+1 \right )^{2}}{4}-\frac{n\left ( n+1 \right
    )\left ( 2n+1 \right )}{6}=\frac{n\left ( n^{2}-1 \right )\left ( 3n+2
    \right )}{12}$$
    $$\Rightarrow \sum{b_ib_j} =\dfrac{n\left ( n^{2}-1 \right )\left ( 3n+2
    \right )}{24} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now