Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    Sum of the series $$2.3.1+3.4.4+4.5.7+...$$ up to $$n$$ terms is

  • Question 2
    1 / -0

    Let $$\displaystyle \left ( a_{n} \right )n\geq 1$$ be an increasing sequence of positive integers such that 1.$$\displaystyle a_{2n}=a_{n}+n$$ for all $$\displaystyle n\geq 1$$ 2.if $$\displaystyle a_{n}$$ is prime, then n is a prime. Prove that $$\displaystyle a_{n}=n,$$ for all $$\displaystyle n\geq 1.$$

  • Question 3
    1 / -0

    Let $$\displaystyle V_{r}$$ denote the sum of the first r terms of an arithmetic progression (AP) whose first term is r and the common difference is $$\displaystyle (2r-1).$$ Let  $$\displaystyle T_{r}=V_{r+1}-V_{r}-2$$ and  $$\displaystyle Q_{r}=T_{r+1}-T_{r}$$ for $$r=1, 2, ...$$

    The sum  $$\displaystyle V_{1}+V_{2}+... +V_{n}$$ is

  • Question 4
    1 / -0

    The sum of n terms of $$1^{2}\, +\, (1^{2}\, +\, 2^{2})\, +\, (1^{2}\, +\, 2^{2}\, +\, 3^{2})\, +\, ....$$.

  • Question 5
    1 / -0

    $$\displaystyle 1^{2}+\left ( 1^{2}+2^{2} \right )+\left (1^{2}+2^{2}+3^{2} \right )+...$$ to $$n$$ terms.

  • Question 6
    1 / -0

    Determine the fourth degree expression in n which is equal to $$\displaystyle \sum_{r=1}^{n}r\left ( r+1 \right )\left ( 2r+3 \right ).$$

  • Question 7
    1 / -0

    Observe the given multiples of 37.
    $${37\times3=111}$$
    $${37\times 6 =222}$$
    $${37\times9=333}$$
    $${37\times12=444}$$-------------------------------
    Find the product of $${37\times27}$$

  • Question 8
    1 / -0

    Sum to $$20$$ terms of the series $$1.{ 3 }^{ 2 }+2.{ 5 }^{ 2 }+3.{ 7 }^{ 2 }+...$$ is

  • Question 9
    1 / -0

    Find the value of 
    $$\displaystyle \left ( 1-\frac{1}{2^{2}} \right )\left ( 1-\frac{1}{3^{3}} \right )\left (1 -\frac{1}{4^{2}} \right )\left ( 1-\frac{1}{5^{2}} \right )........\left ( 1-\frac{1}{9^{2}} \right )\left ( 1-\frac{1}{10^{2}} \right )$$

  • Question 10
    1 / -0

    $$\displaystyle \frac{1^{2}}{1} + \frac{1^{2} + 2^{2}}{1 + 2} + \frac{1^{2} + 2^{2} + 3^{2}}{1 + 2 + 3} + .....$$ upto n terms is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now