Self Studies

Sequences and Series Test - 24

Result Self Studies

Sequences and Series Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    There is no symmetry in symmetry in legs of Fig
    Solution
    There is no symmetry in legs of Fig.(e)
  • Question 2
    1 / -0
    The value of $$1^2+2^2+3^2+\cdots+ n^2$$ is
    Solution
    Let $${ S }_{ n }={ 1 }^{ 2 }+{ 2 }^{ 2 }+\dots +{ n }^{ 2 }$$

    Consider the identity $${ k }^{ 3 }-{ \left( k-1 \right)  }^{ 3 }=3{ k }^{ 2 }-3k+1$$

    Putting $$k=1,2,....,n$$ successively, we obtain

    $${ 1 }^{ 3 }-{ \left( 0 \right)  }^{ 3 }=3{ \left( 1 \right)  }^{ 2 }-3\left( 1 \right) +1$$

    $${ 2 }^{ 3 }-{ \left( 1 \right)  }^{ 3 }=3{ \left( 2 \right)  }^{ 2 }-3\left( 2 \right) +1$$

    $${ 3 }^{ 3 }-{ \left( 2 \right)  }^{ 3 }=3{ \left( 3 \right)  }^{ 2 }-3\left( 3 \right) +1$$
    $$\vdots $$
    $${ n }^{ 3 }-{ \left( n-1 \right)  }^{ 3 }=3{ \left( n \right)  }^{ 2 }-3\left( n \right) +1$$

    Adding both sides we get,

    $${ n }^{ 3 }-{ \left( 0 \right)  }^{ 3 }=3{ \left( 1^{ 2 }+2^{ 2 }+\dots n^{ 2 } \right)  }-3\left( 1+2+\dots +n \right) +n$$

                  $${ n }^{ 3 }=3{ \sum _{ k=1 }^{ n }{ k^{ 2 } }  }-3\sum _{ k=1 }^{ n }{ k+n } $$

    Since 

    $$\sum _{ k=1 }^{ n }{ k } =1+2+\dots +n=\dfrac { n\left( n+1 \right)  }{ 2 } $$

    Therefore,

    $${ S }_{ n }={ \sum _{ k=1 }^{ n }{ k^{ 2 } }  }=\dfrac { 1 }{ 3 } \left[ { n }^{ 3 }+\dfrac { 3n\left( n+1 \right)  }{ 2 } -n \right] $$

    $${ S }_{ n }={ \sum _{ k=1 }^{ n }{ k^{ 2 } }  }=\dfrac { 1 }{ 6 } \left( { 2n }^{ 3 }+{ 3n }^{ 2 }+n \right) $$

    $${ S }_{ n }=\dfrac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 6 } $$

    Hence option B is correct.
  • Question 3
    1 / -0
    The product $$ \displaystyle \left ( 1-\frac{1}{n} \right )\left ( 1-\frac{1}{n+1} \right )\left ( 1-\frac{1}{n+2} \right )..\left ( 1-\frac{1}{2n} \right ) $$  Equals
    Solution

    Given product
    $$\displaystyle =\left ( 1-\dfrac{1}{n} \right )\left ( 1-\dfrac{1}{n+1} \right )\left ( 1-\dfrac{1}{n+2} \right )\cdot \cdot \cdot \left ( 1-\dfrac{1}{2n} \right )$$
    $$\displaystyle =\dfrac{\left ( n-1 \right )}{n}\times \dfrac{n}{\left ( n+1 \right )}\times \dfrac{n+1}{\left ( n+2 \right )}\cdot \cdot \cdot \left ( \dfrac{2n-1}{2n} \right )=\dfrac{\left ( n-1 \right )}{2n}$$

  • Question 4
    1 / -0
    In the following question, the numbers/letters are arranged based on some pattern or principle. Choose the correct answer for the term marked by the symbol (?) 
    $$0,\,3,\,9,\,18,\,30,\,?$$
    Solution
    The difference between the consecutive numbers increases by $$3$$.
    $$3-0 = 3$$
    $$9 - 3 = 6$$
    $$18-9 = 9$$
    $$30-18 = 12$$.
    Pattern is adding multiples of 3
    Next term is $$30+15=45$$
  • Question 5
    1 / -0
    In a certain language '$$ \displaystyle +\div ?   $$' means 'where are you' , '$$ \displaystyle @-\div    $$' means ' we are here' , and '$$ \displaystyle +@\times    $$' means ' you come here' What is the code for ' Where' ?
    Solution
    s.no                        code                                                 sentence 
    1.                   $$ \displaystyle '+\div ?'    $$                                                  Where are you
    2.                   $$ \displaystyle '@-\div '    $$                                                 We are here
    3.                   $$ \displaystyle '+@\times    $$                                                   you come here

    As we can see that where is only in sentence $$1$$ [Where is the word for which we have to find the code ] Therefore we need to gather the codes for $$are$$ & $$you$$ to find out the code for where sentence 1 & 2 have the word $$are$$ in common and the symbol  $$ \displaystyle \div    $$ in common Therefore $$ \displaystyle \div    $$ is the symbol for $$are$$ 
    Sentence 1 & 3 have the word you in common and the symbol + in common therefore + stands for $$you$$ 

    thus, leaving only ?, which stands for $$where$$
  • Question 6
    1 / -0

    Directions For Questions

    In a certain code, ' il be pee ' means 'roses are blue', silk hee means ' red flowers' and ' pee mit hee' means ' flowers are vegctables'

    ...view full instructions

    How is 'red written in that code ?
    Solution
    Type Direct coding (Jumbled fashion)
    S.no.                     code                            sentence
    1.                       il be pee                        roses are blue
    2.                       silk hee                          red flowers
    3.                      pee mit hee                     Flowers are Vegetables 
    common word in sentences 1 & 3 $$ \displaystyle \rightarrow     $$ 'are' and code $$ \displaystyle \rightarrow     $$ 'pee'
    common word in sentences 2 & 3 $$ \displaystyle \rightarrow     $$ flowers and code $$ \displaystyle \rightarrow     $$ 'hee' 
    Therefore 
    Codes                              words
    pee                                    are
    hee                                  flowers
    silk                                    red
    niit                                   vegetables
    il                                     roses/ blue
    be                                     blue./ rose
  • Question 7
    1 / -0
    7th term of $$\displaystyle\frac{1}{2}$$, $$\displaystyle\frac{1}{4}$$, $$\displaystyle\frac{1}{6}$$ $$\dots\dots$$ is
    Solution
    We can see that the series has terms such that $$ \dfrac {1}{2(1)}, \dfrac {1}{2(2)}, \dfrac {1}{2(3)}..... $$

    So, the $$7th$$ term will be $$ \dfrac {1}{2(7)} = \dfrac {1}{14} $$
  • Question 8
    1 / -0
    Find the sum to 90 terms of the series $$5+55+555+\cdots\cdots$$
    Solution
    Given
    $$5+55+555+5555+........+\underset{n fives}{\underbrace{55......5}}$$

    $$=\dfrac{5}{9}(9+99+999+9999+.......+\underset{n \,  nines}{\underbrace{99......9}}$$

    $$=\dfrac{5}{9}(10^1-1+10^2-1+10^3-1+.......+10^n-1)$$

    $$=\dfrac{5}{9}(10^1+10^2+10^3+......+10^n-n)$$

    $$=\dfrac{5}{9}\left(\dfrac{10^{n+1}-10}{9}-n\right)$$

    Asked for $$90$$ terms

    $$n=90$$

    $$=\dfrac{5}{9}\left(\dfrac{10^{91}-10}{9}-90\right)$$

    $$=\dfrac{5}{9}\left(\dfrac{10(10^{90}-1)}{9}-90\right)$$

    $$=\dfrac{50}{9}\left(\dfrac{10^{90}-1}{9}-9\right)$$

    $$=\dfrac{50}{9}\left(\dfrac{10^{90}-1-81}{9}\right)$$

    $$=\dfrac{50}{81}(10^{90}-82)$$.
  • Question 9
    1 / -0
    How is 'vegetables are red flowers' written in this code ?
    Solution
    Type Direct coding (Jumbled fashion)
    S.no.                     code                            sentence
    1.                       il be pee                        roses are blue
    2.                       silk hee                          red flowers
    3.                      pee mit hee                     Flowers are Vegetables 
    common word in sentences 1 & 3 $$ \displaystyle \rightarrow     $$ 'are' and code $$ \displaystyle \rightarrow     $$ 'pee'
    common word in sentences 2 & 3 $$ \displaystyle \rightarrow     $$ flowers and code $$ \displaystyle \rightarrow     $$ 'hee' 
    Therefore 
    Codes                              words
    pee                                    are
    hee                                  flowers
    silk                                    red
    niit                                   vegetables
    il                                     roses/ blue
    be                                     blue./ rose
    nit silk hee pee
  • Question 10
    1 / -0
    In a series, $$T_n=2n+5$$, find $$S_4$$.
    Solution
    $$T_n=2n+5$$
    $$T_1=2(1)+5=7$$;
    Similarly $$T_2=9$$, $$T_3=11$$ and $$T_4=13$$
    $$\therefore S_4=T_1+T_2+T_3+T_4=40$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now