Let $${ S }_{ n }={ 1 }^{ 2 }+{ 2 }^{ 2 }+\dots +{ n }^{ 2 }$$
Consider the identity $${ k }^{ 3 }-{ \left( k-1 \right) }^{ 3 }=3{ k }^{ 2 }-3k+1$$
Putting $$k=1,2,....,n$$ successively, we obtain
$${ 1 }^{ 3 }-{ \left( 0 \right) }^{ 3 }=3{ \left( 1 \right) }^{ 2 }-3\left( 1 \right) +1$$
$${ 2 }^{ 3 }-{ \left( 1 \right) }^{ 3 }=3{ \left( 2 \right) }^{ 2 }-3\left( 2 \right) +1$$
$${ 3 }^{ 3 }-{ \left( 2 \right) }^{ 3 }=3{ \left( 3 \right) }^{ 2 }-3\left( 3 \right) +1$$
$$\vdots $$
$${ n }^{ 3 }-{ \left( n-1 \right) }^{ 3 }=3{ \left( n \right) }^{ 2 }-3\left( n \right) +1$$
Adding both sides we get,
$${ n }^{ 3 }-{ \left( 0 \right) }^{ 3 }=3{ \left( 1^{ 2 }+2^{ 2 }+\dots n^{ 2 } \right) }-3\left( 1+2+\dots +n \right) +n$$
$${ n }^{ 3 }=3{ \sum _{ k=1 }^{ n }{ k^{ 2 } } }-3\sum _{ k=1 }^{ n }{ k+n } $$
Since
$$\sum _{ k=1 }^{ n }{ k } =1+2+\dots +n=\dfrac { n\left( n+1 \right) }{ 2 } $$
Therefore,
$${ S }_{ n }={ \sum _{ k=1 }^{ n }{ k^{ 2 } } }=\dfrac { 1 }{ 3 } \left[ { n }^{ 3 }+\dfrac { 3n\left( n+1 \right) }{ 2 } -n \right] $$
$${ S }_{ n }={ \sum _{ k=1 }^{ n }{ k^{ 2 } } }=\dfrac { 1 }{ 6 } \left( { 2n }^{ 3 }+{ 3n }^{ 2 }+n \right) $$
$${ S }_{ n }=\dfrac { n\left( n+1 \right) \left( 2n+1 \right) }{ 6 } $$
Hence option B is correct.