Self Studies

Sequences and Series Test - 28

Result Self Studies

Sequences and Series Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the infinite series $$\cfrac{1^2+2^2}{\underline{|3}} + \cfrac{1^2+2^2+3^2}{\underline{|4}}+\cfrac{1^2+2^2+3^3+4^2}{\underline{|5}}........$$ is
    Solution
    $${ T }_{ n }=\cfrac { n(n+1)(2n+1) }{ 6(n+1)! } \\ S={ \sum   }_{ i=2 }^{ \infty  }\cfrac { n(n+1)(2n+1) }{ 6(n+1)! } ={ \sum   }_{ i=2 }^{ \infty  }\cfrac { (2n+1) }{ 6(n-1)! } \\ S={ \sum   }_{ i=2 }^{ \infty  }\cfrac { 2n-2+3 }{ 6(n-1)! } \\ S=\cfrac { 1 }{ 6 } { \sum   }_{ i=2 }^{ \infty  }\cfrac { 2(n-1) }{ (n-1)! } +\cfrac { 3 }{ 6 } { \sum   }_{ i=2 }^{ \infty  }\cfrac { 1 }{ (n-1)! } \\ S=\cfrac { 2 }{ 6 } { \sum   }_{ i=2 }^{ \infty  }\cfrac { 1 }{ (n-2)! } +\cfrac { 1 }{ 2 } { \sum   }_{ i=2 }^{ \infty  }\cfrac { 1 }{ (n-1)! } \\ S=\cfrac { 1 }{ 3 } e+\cfrac { 1 }{ 2 } (e-1)\\ S=\cfrac { 5e }{ 6 } -\cfrac { 1 }{ 2 } $$
  • Question 2
    1 / -0
    Let $$S$$ denote the sum of the infinite series $$1+\cfrac { 8 }{ 2! } +\cfrac { 21 }{ 3! } +\cfrac { 40 }{ 4! } +\cfrac { 65 }{ 5! } +.......$$. Then
    Solution
    $$\; \;\; S_n=1+8+21+40+65+.....+a_n \\ - \underline{ S_n=\quad \; \;1+\;8+21+40+.....+a_{n-1}+a_n }$$
    $$\;\;\;0\;=1+7+13+19+25+...,,,,,,,,.-a_n$$
    $${ a }_{ n }=1+7+13+19+25+....\\ { a }_{ n }=\cfrac { n }{ 2 } [2a+(n-1)d]=\cfrac { n }{ 2 } [2+(n-1)6]\\ { a }_{ n }=n(3n-2)\\ S={ \sum   }_{ i=1 }^{ \infty  }\cfrac { n(3n-2) }{ n! } ={ \sum   }_{ i=1 }^{ \infty  }\cfrac { (3n-2) }{ (n-1)! } $$
    Adding and subtracting $$1$$ in numerator
    $$S={ \sum   }_{ i=2 }^{ \infty  }\cfrac { 3(n-1) }{ (n-1)! } +{ \sum   }_{ i=1 }^{ \infty  }\cfrac { 1 }{ (n-1)! } \\ S=3{ \sum   }_{ i=2 }^{ \infty  }\cfrac { 1 }{ (n-2)! } +{ \sum   }_{ i=1 }^{ \infty  }\cfrac { 1 }{ (n-1)! } \\ S=3e+e\\ S=4e\\ 8<S<12\\ { e }^{ x }=1+\cfrac { x }{ 1! } +\cfrac { { x }^{ 2 } }{ 2! } +\cfrac { { x }^{ 3 } }{ 3! } +\cfrac { { x }^{ 4 } }{ 4! } +....\infty \\ e=1+\cfrac { 1 }{ 1! } +\cfrac { 1 }{ 2! } +\cfrac { 1 }{ 3! } +\cfrac { 1 }{ 4! } +....\infty $$
  • Question 3
    1 / -0
    $$x=1+\frac{1}{2\times \underline{|1}}+\frac{1}{4\times \underline{|2}}+\frac{1}{8\times \underline{|3}}$$
    Solution
    We know,
    $$e^{x}=1+\dfrac{x}{1!}+\dfrac{x^{2}}{2!}+\dfrac{x^{3}}{3!}+...$$
    put $$x=\dfrac{1}{2}$$
    $$\therefore e^{\frac{1}{2}}=1+\dfrac{1}{2\times1!}+\dfrac{1}{4\times2!}+\dfrac{1}{8\times3!}+...$$
    $$\therefore Ans=\sqrt{e}$$
  • Question 4
    1 / -0
    In the series $$1+3+6+10+......,$$ find the $$n^{th}$$ term:
    Solution

    $$1=1$$, here $$n=1\Rightarrow \dfrac {1(1+1)}{2}=1$$
    $$1+2=3$$, here $$n=2\Rightarrow \dfrac {2(2+1)}{2}=3$$

    $$1+2+3=6$$, here $$n=3\Rightarrow \dfrac {3(3+1)}{2}=6$$

    $$1+2+3+4=10$$, here $$n=4\Rightarrow \dfrac {4(4+1)}{2}=10$$

    $${ n }^{ th }$$ term is sum of $$n$$ terms

    Therefore, $${ T }_{ n }=\dfrac { n(n+1) }{ 2 } $$

  • Question 5
    1 / -0
    Consider an incomplete pyramid of balls on a square base having $$18$$ layers; and having $$13$$ balls on each side of the top layer. Then the total number $$N$$ of balls in that pyramid satisfies
    Solution

    The top layer has $$(13\times 13)$$ balls the layer below it  will have $$(14\times 14)$$ balls

    We have $$18$$ layers

    So the total number of balls 

    $$N=(13\times 13)+(14\times 14)+.......(30\times 30)\\ N={ 13 }^{ 2 }+{ 14 }^{ 2 }+.....{ 30 }^{ 2 }$$

    Sum of squares of first $$n$$ natural numbers is $$\dfrac { n(n+1)(2n+1) }{ 6 } \\ $$

    $$\therefore N=$$ sum of first $$30$$ $$-$$ sum of first $$12$$

    $$N=\dfrac { 30\times 31\times 61 }{ 6 } -\dfrac { 12\times 13\times 25 }{ 6 } \\ N=8805\\ $$

    $$\Rightarrow 8000<N<9000$$

    Hence, option B is correct.
  • Question 6
    1 / -0
    With the help of match-sticks, Zalak prepared a pattern as shown below. When $$97$$ matchsticks are used, the serial number of the figure will be ...........

    Solution
    Pattern associated with the number of matchsticks:
    Figure 1: No. of sticks $$=3=3+0$$
    Figure 2: No. of sticks $$=5=3+2$$
    Figure 3: No. of sticks $$=7=3+2+2$$
    Figure 4: No. of sticks $$=9=3+2+2+2$$
    ----------------------------------------
    The rule associated with it can be given as no. of sticks $$=3+2(n-1)$$ where $$n$$ is the number of the figure.
    Now there are $$97$$ matchsticks
    $$\implies 3+2(n-1)=97$$
    $$\implies 3+2n-2=97$$
    $$\implies 2n=96$$
    $$\implies n=48$$
    Hence, serial number of the figure having $$97$$ matchsticks is $$48$$.
  • Question 7
    1 / -0
    Find the $$(2n)^{th}$$ term of the series whose $$n^{th}$$ term is $$\dfrac{n^2+1}{n^3}$$:
    Solution
    $${ T }_{ 2n }=\cfrac { { (2n) }^{ 2 }+1 }{ { (2n) }^{ 3 } } =\cfrac { 4{ n }^{ 2 }+1 }{ 8{ n }^{ 3 } } $$
  • Question 8
    1 / -0
    The value of $$\dfrac {1}{i} + \dfrac {1}{i^{2}} + \dfrac {1}{i^{3}} + .... + \dfrac {1}{i^{102}}$$ is
    Solution
    $$\dfrac {1}{i} + \dfrac {1}{i^{2}} + \dfrac {1}{i^{3}} + .... + \dfrac {1}{i^{102}}$$ (GP)
    Therefore, $$ S_{n} = \dfrac {\dfrac {1}{i}\left \{1 - \left (\dfrac {1}{i}\right )^{102}\right \}}{1 - \left (\dfrac {1}{i}\right )} = \dfrac {(1 + 1)}{i - 1} \left (\because i^{2} = 1\ and\ i^{2} = -1\right )$$
    $$= \dfrac {2(i + 1)}{i^{2} - 1} = -(i + 1) = -1 - i$$
  • Question 9
    1 / -0
    The sum of the series $$\displaystyle \sum_{n = 8}^{17} \dfrac{1}{(n + 2)(n + 3)} $$ is equal to
    Solution
    $$\sum_{n=8}^{17}\cfrac1{(n+2)(n+3)}$$
    $$=\sum_{n=8}^{17}\cfrac1{(n+2)}-$$$$\cfrac1{(n+3)}$$
    $$=\sum_{n=8}^{17}\cfrac1{(n+2)}-$$$$\sum_{n=8}^{17}\cfrac1{(n+3)}$$
    $$=\left(\cfrac1{10}+\cfrac1{11}+.....+\cfrac1{19}\right)-$$$$\left(\cfrac1{11}+\cfrac1{12}+.....+\cfrac1{20}\right)$$
    $$=\cfrac1{10}-\cfrac1{20}$$
    $$=\cfrac1{20}$$
    Hence, D is the correct option.
  • Question 10
    1 / -0
    Let $$a_n=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}$$ then $$\displaystyle \sum_{n=1}^{144}a_n$$ equals
    Solution
    Given $${ a }_{ n }=\cfrac { 4n+\sqrt { 4{ n }^{ 2 }-1 }  }{ \sqrt { 2n+1 } +\sqrt { 2n-1 }  } $$
    Multiplying Dividing by $$\sqrt { 2n+1 } -\sqrt { 2n-1 } $$

    $${ a }_{ n }=\cfrac { \left( 4n+\sqrt { 4{ n }^{ 2 }-1 }  \right) \left( \sqrt { 2n+1 } -\sqrt { 2n-1 }  \right)  }{ \left( 2n+1 \right) -\left( 2n-1 \right)  } $$
    $${ a }_{ n }=\cfrac { 4n\sqrt { 2n+1 } -4n\sqrt { 2n-1 } +(2n+1)\sqrt { 2n-1 } -(2n-1)\sqrt { 2n+1 }  }{ 2 } $$
    $$a_n=\cfrac{(2n+1)\sqrt { 2n+1 } -(2n-1)\sqrt { 2n-1 }  }{ 2 }$$
    $${ a }_{ n }=\cfrac { { \left( 2n+1 \right)  }^{ { 3 }/{ 2 } }-{ \left( 2n-1 \right)  }^{ { 3 }/{ 2 } } }{ 2 } $$

    $$a_1=\cfrac { { \left( 3 \right)  }^{ { 3 }/{ 2 } }-{ \left( 1 \right)  }^{ { 3 }/{ 2 } } }{ 2 }$$
    $$a_2=\cfrac { { \left( 5 \right)  }^{ { 3 }/{ 2 } }-{ \left( 3 \right)  }^{ { 3 }/{ 2 } } }{ 2 }$$
    $$a_3=\cfrac { { \left( 7\right)  }^{ { 3 }/{ 2 } }-{ \left( 5 \right)  }^{ { 3 }/{ 2 } } }{ 2 }$$
    $$a_n=\cfrac { { \left( 2n+1 \right)  }^{ { 3 }/{ 2 } }-{ \left( 2n-1 \right)  }^{ { 3 }/{ 2 } } }{ 2 }$$

    $$\sum _{ i=1 }^{n }{ { a }_{ n } }=\cfrac { { \left( 2n+1 \right)  }^{ { 3 }/{ 2 } }-1 }{ 2 }$$
    $$\sum _{ i=1 }^{144 }{ { a }_{ n } }$$$$=\cfrac { { \left( 2\times 144+1 \right)  }^{ { 3 }/{ 2 } }-1 }{ 2 }=\cfrac { { \left( 289 \right)  }^{ { 3 }/{ 2 } }-1 }{ 2 } \\ =\cfrac { { \left( 17\right)  }^{ { 3 } }-1 }{ 2 }=2456$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now