Self Studies

Sequences and Series Test - 29

Result Self Studies

Sequences and Series Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Three bells commenced to toll at the same time and tolled at intervals of $$20, 30, 40$$ seconds respectively. If they toll together at $$6$$ am, then which of the following is the time at which they can toll together
    Solution

  • Question 2
    1 / -0
    The first term of an AP is $$148$$ and the common difference is $$-2$$. If the AM of first $$n$$ terms of the AP is $$125$$, then the value of $$n$$ is
    Solution
    Given, $$a=148, d=-2$$
    AM of $$n$$ terms $$=125$$
    $$\Rightarrow \dfrac { { a }_{ 1 }+{ a }_{ 2 }+\cdots +{ a }_{ n } }{ n } =125$$
    $$\Rightarrow \dfrac { \dfrac { n }{ 2 } \left[ 2a+\left( n-1 \right) d \right]  }{ n } =125$$
    $$\Rightarrow 2a+\left( n-1 \right) d=250$$
    $$\Rightarrow 2\times 148+\left( n-1 \right) \left( -2 \right) =250$$
    $$\Rightarrow 296-2n+2=250$$
    $$\Rightarrow 298-2n=250$$
    $$\Rightarrow n=24$$
  • Question 3
    1 / -0
    Find the sum of the series 
    $$\displaystyle \frac{1}{2\cdot 3}+\frac {1}{4\cdot 5}+\frac {1}{6\cdot 7}+ ...$$
    Solution
    $$\displaystyle \frac {1}{2\cdot 3}+ \frac {1}{4\cdot 5}+\frac {1}{6\cdot 7}$$

    $$\displaystyle \frac {1}{2}- \frac {1}{3}+ \frac {1}{4}- \frac {1}{5}+\frac {1}{6}-\frac {1}{7} + ...$$

    $$\displaystyle =1-1 + \frac {1}{2}-\frac {1}{3}+ \frac {1}{4}- \frac {1}{5}+...$$

    $$\displaystyle = 1-\left ( 1- \frac {1}{2}+\frac {1}{3}-\frac {1}{4}+ \frac {1}{5}\right )$$

    $$= 1- log \, 2 = log\, e - log\, 2$$

    $$=log \frac {e}{2}$$
  • Question 4
    1 / -0
    If the natural numbers are divided into groups of {1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10} ....Then the /sum of 50th group is 

    Solution
    Pattern:
    1
    2 3
    4 5 6
    7 8 9 10
    ..........
    Series for starting number:
    1, 2, 4, 7, ...
    Let  $$T_{n}=an^{2}+bn+c$$
    a+b+c=1                         ......(1)
    4a+2b+c=2                   ......(2)
    9a+3b+c=4                   .......(3)
    From eq (1), (2), (3), we get:
    $$a=\dfrac{1}{2},b=-\dfrac{1}{2} ,c=1$$
    $$\therefore T_{n}=\dfrac{n^{2}}{2}-\dfrac{n}{2}+1$$
    $$\therefore T_{50}=\dfrac{50^{2}}{2}-\dfrac{50}{2}+1=1226$$
    Now, elements in 50th group:
    1226, 1227, 1228,.....(50 terms)
    $$\therefore S_{n}=\dfrac{50}{2}[2\times 1226+(50-1)\times 1]=62525$$

  • Question 5
    1 / -0
    If $$\displaystyle \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + ..... $$ upto $$\displaystyle \infty = \frac{\pi^2}{6},$$ then $$\displaystyle \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + .... =$$
    Solution
    Let $$S=\sum ^{ \infty  }{ \dfrac { 1 }{ { n }^{ 2 } }  } =\dfrac { { \pi  }^{ 2 } }{ 6 } \Rightarrow \dfrac { S }{ { 2 }^{ 2 } } =\dfrac { 1 }{ { 2 }^{ 2 } } +\dfrac { 1 }{ 4^{ 2 } } +\dfrac { 1 }{ 6^{ 2 } } +...\infty $$

    $$\therefore { S }^{ ' }=S-\dfrac { S }{ 4 } =\dfrac { 3S }{ 4 } =\dfrac { 1 }{ { 1 }^{ 2 } } +\left(\dfrac { 1 }{ 2^{ 2 } } -\dfrac { 1 }{ 2^{ 2 } } \right)+\dfrac { 1 }{ 3^{ 2 } } +\left(\dfrac { 1 }{ 4^{ 2 } } -\dfrac { 1 }{ 4^{ 2 } } \right)+...\infty $$

    ie, $$\therefore { S }^{ ' }=\dfrac { 1 }{ { 1 }^{ 2 } } +\dfrac { 1 }{ 3^{ 2 } } +\dfrac { 1 }{ { 5 }^{ 2 } } +...\infty =\dfrac { 3S }{ 4 } =\dfrac { 3{ \pi  }^{ 2 } }{ 4\times 6 } =\dfrac { { \pi  }^{ 2 } }{ 8 } $$

    So, Option C is the correct one.
  • Question 6
    1 / -0
    The value of a for which side of nth square equals the diagonals of $$(n + 1)^{th}$$ square is 
    Solution
    Given $$(Diagonal)_{n+1}=(Side)_n \\ \sqrt{2}a_1r^n=a_1r^{n-1} \\ \sqrt{2}r=1 \\ r=\cfrac{1}{\sqrt{2}}$$
  • Question 7
    1 / -0
    $$\displaystyle \sum_{k = 1}^{\infty} \dfrac {6^{k}}{(3^{2k + 1} + 2^{2k + 1}) - (3^{k}2^{k + 1} + 2^{k}3^{k + 1})}$$ is equal to
    Solution
    $${ \sum   }_{ k=1 }^{ \infty  }\cfrac { { 6 }^{ k } }{ ({ 3 }^{ 2k+1 }+{ 2 }^{ 2k+1 })-({ 3 }^{ k }{ 2 }^{ k+1 }+{ 2 }^{ k }{ 3 }^{ k+1 }) } \\ ={ \sum   }_{ k=1 }^{ \infty  }\cfrac { { 6 }^{ k } }{ 3\cdot { 3 }^{ 2k }-3\cdot { 3 }^{ k }{ 2 }^{ k }+{ 2 }^{ 2 }{ 2 }^{ 2k }-2\cdot { 3 }^{ k }{ 2 }^{ k } } \\ ={ \sum   }_{ k=1 }^{ \infty  }\cfrac { { 6 }^{ k } }{ 3\cdot { 3 }^{ k }({ 3 }^{ k }-{ 2 }^{ k })-{ 2 }\cdot { 2 }^{ k }({ 3 }^{ k }-{ 2 }^{ k }) } \\ ={ \sum   }_{ k=1 }^{ \infty  }\cfrac { { 6 }^{ k } }{ ({ 3 }^{ k }-{ 2 }^{ k })({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } \\ \cfrac { { 6 }^{ k } }{ ({ 3 }^{ k }-{ 2 }^{ k })({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } =\cfrac { { 3 }^{ k }A }{ ({ 3 }^{ k }-{ 2 }^{ k }) } +\cfrac { { 3 }^{ k }B }{ ({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } \\ \cfrac { { 6 }^{ k } }{ ({ 3 }^{ k }-{ 2 }^{ k })({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } =\cfrac { (3A+B){ 3 }^{ 2k }B-(2A+B){ 6 }^{ k } }{ ({ 3 }^{ k }-{ 2 }^{ k })({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } \\ 3A+B=0\Rightarrow 3A=-B\quad \quad (1)\\ 2A+B=-1\\ 2A-3A=-1\quad from(1)\\ -A=-1\\ A=1\Rightarrow B=-3A=-3\\ { \sum   }_{ k=1 }^{ \infty  }\cfrac { { 6 }^{ k } }{ ({ 3 }^{ k }-{ 2 }^{ k })({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } =\sum  \cfrac { { 3 }^{ k } }{ ({ 3 }^{ k }-{ 2 }^{ k }) } -\sum  \cfrac { { 3 }^{ k+1 } }{ ({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } \\ { T }_{ 1 }=\cfrac { 3 }{ 3-2 } -\cfrac { { 3 }^{ 2 } }{ { 3 }^{ 2 }-{ 2 }^{ 2 } } \\ { T }_{ 2 }=\cfrac { { 3 }^{ 2 } }{ { 3 }^{ 2 }-{ 2 }^{ 2 } } -\cfrac { { 3 }^{ 3 } }{ { 3 }^{ 3 }-{ 2 }^{ 3 } } \\ { T }_{ n }=\cfrac { { 3 }^{ k } }{ ({ 3 }^{ k }-{ 2 }^{ k }) } -\cfrac { { 3 }^{ k+1 } }{ ({ 3 }^{ k+1 }-{ 2 }^{ k+1 }) } \\ { S }_{ n }=3-\cfrac { { 3 }^{ n+1 } }{ { 3 }^{ n+1 }-{ 2 }^{ n+1 } } \\ \underset { n\rightarrow \infty  }{ \lim } { S }_{ n }=3$$
  • Question 8
    1 / -0
    Let $$S = \displaystyle \sum_{n = 1}^{99} = \dfrac {5^{100}}{5^{100} + 25^{n}}$$ then find the value of $$[S]$$, where $$[.] = G.I.F.$$
    Solution

  • Question 9
    1 / -0
    If $$\alpha =1 / 4$$ and $$P_n$$ denotes the perimeter of the nth square then$$\sum_{n=1}^{\infty } P_n$$ equals 
    Solution
    Parameter of $$n^{th}$$ square $$=4a_n=4a_1r^{n-1}$$
    $$\sum_{n=1}^{\infty}$$$$=P_1+P_2+P_3+....+P_n \\ =4a_1(1+r+r^2+r^3+....infty)$$
    Sum of infinite GP $$=\cfrac{a}{1-r}$$
    $$\sum_{n=1}^{\infty}=4a_1\cfrac{1}{1-r}=\cfrac{4a_1}{1-\sqrt{2\alpha ^2-2/alpha+1}}$$
    Given $$a_1=1, \quad \alpha=\cfrac{1}{4}$$
    $$\sum_{n=1}^{\infty}$$$$=\cfrac { 4 }{ 1-\sqrt { \cfrac { 2 }{ 16 } -\cfrac { 2 }{ 4 } +1 }  } =\cfrac { 4 }{ 1-\cfrac { \sqrt { 2-8+16 }  }{ 4 }  } =\cfrac { 16 }{ 4-\sqrt { 10 }  } \\ =\cfrac { 16 }{ 4-\sqrt { 10 }  } \times \cfrac { 4+\sqrt { 10 }  }{ 4+\sqrt { 10 }  } =\cfrac { 16(4+\sqrt { 10 } ) }{ 6 } =\cfrac { 8 }{ 3 } (4+\sqrt { 10 } )$$
  • Question 10
    1 / -0
    If $$ a_1 \in R - \left \{ 0 \right \}, i = 1, 2, 3, 4$$ and $$x \in R$$ and $$\left ( \sum_{i=1}^{3}a_i^2\right ) x^2-2x \left ( \sum_{i=1}^{3}a_i a_{i+1}\right )+\sum_{i=2}^{4}a_i^2\leq 0$$, then $$a_1, a_2, a_3, a_4$$ are in
    Solution
    $$({ { a }_{ 1 } }^{ 2 }+{ { a }_{ 2 } }^{ 2 }+{ { a }_{ 3 } }^{ 2 }){ x }^{ 2 }-2x({ a }_{ 1 }{ a }_{ 2 }+{ a }_{ 2 }{ a }_{ 3 }+{ a }_{ 3 }{ a }_{ 4 })+({ { a }_{ 2 } }^{ 2 }+{ { a }_{ 3 } }^{ 2 }+{ { a }_{ 4 } }^{ 2 })\le 0\\ ({ x }^{ 2 }{ { a }_{ 1 } }^{ 2 }-2x{ a }_{ 1 }{ a }_{ 2 }+{ { a }_{ 2 } }^{ 2 })+({ { a }_{ 2 } }^{ 2 }{ x }^{ 2 }-2{ a }_{ 2 }{ a }_{ 3 }+{ { a }_{ 3 } }^{ 2 })+({ { a }_{ 3 } }^{ 2 }{ x }-2x{ a }_{ 3 }{ a }_{ 4 }+{ { a }_{ 4 } }^{ 2 })\le 0\\ { ({ a }_{ 1 }x-{ a }_{ 2 }) }^{ 2 }+{ ({ a }_{ 2 }x-{ a }_{ 3 }) }^{ 2 }+{ ({ a }_{ 3 }x-{ a }_{ 4 }) }^{ 2 }\le 0$$
    Since each one is a square term
    These sum of term cannot be less than $$0$$
    Only possibility they can be zero
    For
    $$a_1x-a_2=0 \Rightarrow x=\cfrac{a_2}{a_1} \\ a_2x-a_3=0 \Rightarrow x=\cfrac{a_3}{a_2} \\ a_3x-a_4=0 \Rightarrow x=\cfrac{a_4}{a_3} \\ x=\cfrac{a_2}{a_1} = \cfrac{a_3}{a_2} = \cfrac{a_4}{a_3}=k$$
    Hence, $$a_1,a_2,a_3,a_4$$ are in GP
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now